距离度量——使用 np.linalg.norm 计算两点之间的 Lp 距离

本文介绍了特征空间中实例点的距离度量方法,包括Lp距离、曼哈顿距离、欧式距离及切比雪夫距离,并提供了使用Python numpy库进行计算的具体方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

特征空间中两个实例点的距离是两个实例点相似程度的反映。可以用LpL_pLp distance来度量两个实例点的距离:
Lp(xi,xj)=(∑l=1n∣xi(l)−xj(l)∣p))1pL_p(x_i, x_j) = \left( \sum_{l=1}^{n} \left| x_i^{(l)} - x_j^{(l)} \right|^{p} ) \right )^{\frac{1}{p}}Lp(xi,xj)=(l=1nxi(l)xj(l)p))p1
这里 p≥1p≥1p1

  • p=1p=1p=1 时,称为曼哈顿距离;
  • p=2p=2p=2 时,称为欧式距离;
  • p=∞p=\inftyp= 时,称为切比雪夫距离。它是各个坐标距离的最大值。

Python 中的 numpy 库可以很方便地计算两点(x1, x2)的距离,使用 numpy 中求范数的方法 np.linalg.norm() 实现:

np.linalg.norm(x1-x2, ord=None, axis=None, keepdims=False)

注:
度量(metric)是对一个集合里面的两个元素而言的,是两点间距离的抽象。
范数(norm)是对一个元素而言的,是实数的绝对值或复数的模这样的长度的抽象。

其中各参数分别为(需要更改的是前两个):

  • x1-x2:两个点(向量)各个维度上的差
  • ord:求哪一种距离,对应 ppp,默认为 2
  • axis:取值 0 或 1,0 表示按列向量处理,求多个列向量的范数。默认为 0
  • keepding:是否保持矩阵的二维特性,默认为 False
import tkinter as tk from tkinter import ttk, messagebox, filedialog import json import os import math import numpy as np class OpticalSystem: def __init__(self): self.surfaces = [] # 存储光学表面对象 self.entrance_pupil_diameter = None # 入瞳直径 (mm) self.entrance_pupil_position = None # 入瞳位置 (相对第一个面顶点) (mm) self.object_infinite = True # 物在无穷远 self.field_angle = None # 半视场角 (度) self.object_distance = None # 物距 (有限远) (mm) self.object_height = None # 物高 (有限远) (mm) self.aperture_angle = None # 孔径角 (有限远) (度) self.light_type = "d" # 色光类型,默认d光 self.ray_paths = [] # 存储光线路径数据 # 计算结果存储 self.results = { "focal_length": None, # 焦距 f' "ideal_image_distance": None, # 理想像距 l' "actual_image_position": None, # 实际像位置 "image_principal_plane": None, # 像方主面位置 lH' "exit_pupil_distance": None, # 出瞳距 lp' "ideal_image_height": None, # 理想像高 y0' "spherical_aberration": None, # 球差 "longitudinal_chromatic": None, # 位置色差 "tangential_field_curvature": None, # 子午场曲 xt' "sagittal_field_curvature": None, # 弧矢场曲 xs' "astigmatism": None, # 像散 Δxts' "actual_image_height": None, # 实际像高 "relative_distortion": None, # 相对畸变 "absolute_distortion": None, # 绝对畸变 "lateral_chromatic": None, # 倍率色差 "tangential_coma": None # 子午慧差 } class Surface: def __init__(self, r=float('inf'), d=0.0, nd=1.0, vd=0.0): self.r = r # 曲率半径 (mm) self.d = d # 厚度/间隔 (mm) self.nd = nd # d光折射率 self.vd = vd # 阿贝数 def to_dict(self): """将表面数据转换为字典""" return { "r": self.r, "d": self.d, "nd": self.nd, "vd": self.vd } @classmethod def from_dict(cls, data): """从字典创建表面对象""" return cls( r=data.get('r', float('inf')), d=data.get('d', 0.0), nd=data.get('nd', 1.0), vd=data.get('vd', 0.0) ) class calculate: def trace_paraxial_ray(surfaces, h0, u0, n0=1.0): """ 近轴光线追迹函数 :param surfaces: 光学表面列表 :param h0: 初始光线高度 :param u0: 初始光线角度(弧度) :param n0: 初始介质折射率 :return: 最后的光线高度和角度 """ h = h0 u = u0 n = n0 # 当前介质折射率 for i, surf in enumerate(surfaces): # 计算曲率(平面时曲率为0) c = 0.0 if math.isinf(surf.r) else 1.0 / surf.r # 折射公式:n'u' = nu + (n - n') * c * h n_prime = surf.nd # 折射后折射率 u_prime = (n * u + (n - n_prime) * c * h) / n_prime # 如果当前不是最后一个面,计算传播到下个面的高度 if i < len(surfaces) - 1: d = surf.d # 到下一个面的距离 h_next = h + d * u_prime else: h_next = h # 最后一个面后不需要传播 # 更新参数 h = h_next u = u_prime n = n_prime # 更新为当前面后的折射率 return h, u def calculate_focal_length(surfaces): """ 计算系统焦距 :param surfaces: 光学表面列表 :return: 焦距值(mm) """ # 追迹平行于光轴的光线(无穷远物) h0 = 1.0 # 任意高度,取1便于计算 u0 = 0.0 # 平行于光轴 h_final, u_final = calculate.trace_paraxial_ray(surfaces, h0, u0) # 焦距 f' = -h0 / u_final if abs(u_final) < 1e-10: # 防止除零错误 return float('inf') return -h0 / u_final def calculate_ideal_image_distance(surfaces, object_infinite, object_distance=None): """ 计算理想像距 :param surfaces: 光学表面列表 :param object_infinite: 物是否在无穷远 :param object_distance: 物距(有限远时) :return: 理想像距(mm) """ if object_infinite: # 无穷远物:理想像距等于焦距对应的像距 return calculate.calculate_focal_length(surfaces) else: # 有限远物:使用高斯公式计算理想像距 if object_distance is None: raise ValueError("有限远物需要提供物距") # 计算系统焦距 f_prime = calculate.calculate_focal_length(surfaces) # 高斯公式:1/f' = 1/l' - 1/l # 其中 l 为物距(负值),l' 为像距 l = -object_distance # 物距为负值(物在左侧) # 计算像距 l' if abs(f_prime) < 1e-10: return float('inf') l_prime = 1 / (1/f_prime + 1/l) return l_prime def calculate_principal_plane_position(surfaces): """ 计算像方主面位置 :param surfaces: 光学表面列表 :return: 主面位置(相对于最后一个面顶点,正值表示在右侧) """ # 计算焦距 f_prime = calculate.calculate_focal_length(surfaces) # 追迹平行于光轴的光线 h0 = 1.0 # 初始高度 u0 = 0.0 # 平行于光轴 h_final, u_final = calculate.trace_paraxial_ray(surfaces, h0, u0) # 主面位置 lH' = -h_final / u_final - f_prime if abs(u_final) < 1e-10: return float('inf') return -h_final / u_final - f_prime def calculate_exit_pupil_distance(surfaces, entrance_pupil_position): """ 计算系统的出瞳距 :param surfaces: 光学表面列表 :param entrance_pupil_position: 入瞳位置(相对于第一个面顶点) :return: 出瞳距(相对于最后一个面顶点) """ # 定义初始光线参数 u0 = 0.01 # 小角度(弧度) # 计算第一个面的光线高度 h0 = -entrance_pupil_position * u0 # 进行近轴光线追迹 h_final, u_final = calculate.trace_paraxial_ray(surfaces, h0, u0) # 计算出瞳距:l' = -h_final / u_final if abs(u_final) < 1e-10: # 防止除零错误 return float('inf') return -h_final / u_final def calculate_ideal_image_height(system): """ 计算理想像高 :param system: OpticalSystem对象 :return: 理想像高(mm) """ # 获取系统焦距 focal_length = calculate.calculate_focal_length(system.surfaces) if system.object_infinite: # 无穷远物 # 理想像高 y0' = -f' * tan(ω) field_angle_rad = math.radians(system.field_angle) return -focal_length * math.tan(field_angle_rad) else: # 有限远物 # 获取理想像距 ideal_image_distance = calculate.calculate_ideal_image_distance( system.surfaces, system.object_infinite, system.object_distance ) # 获取主面位置 principal_plane = calculate.calculate_principal_plane_position(system.surfaces) # 计算实际像位置(从最后一个面顶点) actual_image_position = ideal_image_distance + principal_plane # 计算放大率 β = l'/l # l = -object_distance(物在左侧为负) magnification = actual_image_position / (-system.object_distance) # 理想像高 y0' = β * y return magnification * system.object_height def trace_actual_ray(surfaces, start_point, direction, wavelength="d", tolerance=1e-6): """ 实际光线追迹函数 :param surfaces: 光学表面列表 :param start_point: 光线起点 (y, z) - 子午面内 :param direction: 光线方向向量 (dy, dz) :param wavelength: 光线波长 ("d", "f", "c") :param tolerance: 收敛容差 :return: 光线路径 (每个表面的交点坐标列表) """ path = [start_point] # 存储光线路径 current_point = np.array(start_point, dtype=float) current_dir = np.array(direction, dtype=float) current_dir /= np.linalg.norm(current_dir) # 归一化方向向量 # 表面顶点位置(累积厚度) surface_positions = [0.0] for i in range(len(surfaces)-1): surface_positions.append(surface_positions[-1] + surfaces[i].d) for i, surf in enumerate(surfaces): # 获取当前表面的位置 surface_z = surface_positions[i] # 平面处理 if math.isinf(surf.r): # 平面方程: z = surface_z if abs(current_dir[1]) < tolerance: # 平行于平面 return path # 无法相交,返回当前路径 t = (surface_z - current_point[1]) / current_dir[1] intersect = current_point + t * current_dir else: # 球面 # 球心位置 (球心在光轴上) center_z = surface_z + surf.r center = np.array([0, center_z]) # 光线方程: P = current_point + t * current_dir # 球面方程: (y)^2 + (z - center_z)^2 = r^2 oc = current_point - np.array([0, center_z]) a = np.dot(current_dir, current_dir) b = 2 * np.dot(oc, current_dir) c = np.dot(oc, oc) - surf.r**2 discriminant = b**2 - 4*a*c if discriminant < 0: # 尝试使用更宽松的容差 discriminant = max(0, discriminant) # 避免负值 t = -b / (2*a) # 使用近似解 else: # 选择正确的交点 (较小的正t值) t1 = (-b + np.sqrt(discriminant)) / (2*a) t2 = (-b - np.sqrt(discriminant)) / (2*a) valid_ts = [t for t in (t1, t2) if t > tolerance] if not valid_ts: return path # 没有有效交点,直接返回当前路径 t = min(valid_ts) intersect = current_point + t * current_dir path.append(intersect) # 如果不是最后一个表面,计算折射 if i < len(surfaces) - 1: # 计算法向量 if math.isinf(surf.r): # 平面 normal = np.array([0, 1]) # 法向量沿z轴 else: # 球面 normal = intersect - center normal /= np.linalg.norm(normal) # 根据曲率半径符号调整法向量方向 if surf.r > 0: normal = -normal # 计算折射 n1 = 1.0 if i == 0 else surfaces[i-1].nd # 入射介质折射率 n2 = surf.nd # 折射介质折射率 # 应用Snell定律 cos_theta1 = -np.dot(current_dir, normal) sin_theta1 = np.sqrt(max(0, 1 - cos_theta1**2)) # 避免负数 sin_theta2 = (n1 / n2) * sin_theta1 if abs(sin_theta2) > 1: # 全反射,停止追迹 return path cos_theta2 = np.sqrt(max(0, 1 - sin_theta2**2)) # 计算折射方向 refraction_dir = (n1 / n2) * current_dir + \ ((n1 / n2) * cos_theta1 - cos_theta2) * normal # 更新当前点和方向 current_point = intersect current_dir = refraction_dir / np.linalg.norm(refraction_dir) return path def calculate_actual_image_position(system, ray_count=5): """ 计算实际像位置(轴上点) :param system: OpticalSystem对象 :param ray_count: 使用的光线数量(奇数) :return: 实际像位置(相对于最后一个表面顶点,单位mm) """ if ray_count < 3: ray_count = 3 # 计算入瞳半径 entrance_radius = system.entrance_pupil_diameter / 2 # 生成不同高度的光线 ray_heights = np.linspace(-entrance_radius, entrance_radius, ray_count) image_positions = [] # 表面顶点位置(累积厚度) surface_positions = [0.0] for i in range(len(system.surfaces)-1): surface_positions.append(surface_positions[-1] + system.surfaces[i].d) last_surface_z = surface_positions[-1] for h in ray_heights: if system.object_infinite: # 无穷远物:平行光 start_point = np.array([h, system.entrance_pupil_position]) direction = np.array([0, 1]) # 沿光轴方向 else: # 有限远物:从物点发出的光线 object_point = np.array([0, -system.object_distance]) # 光线方向指向入瞳上的点 pupil_point = np.array([h, system.entrance_pupil_position]) direction = pupil_point - object_point direction /= np.linalg.norm(direction) start_point = object_point try: # 追迹光线 path = calculate.trace_actual_ray( system.surfaces, start_point, direction, system.light_type ) if len(path) < 2: continue # 获取最后两个点(最后一个表面后的直线传播) p1 = path[-2] # 最后一个表面上的点 p2 = path[-1] # 最后一个表面后的点 # 计算光线与光轴的交点 (y=0) # 参数方程: P = p1 + t * (p2 - p1) dir_vec = p2 - p1 # 避免除以零 if abs(dir_vec[1]) < 1e-10: continue # 计算t值使P_y=0 t = -p1[0] / dir_vec[0] if abs(dir_vec[0]) > 1e-10 else None if t is None or t < 0: continue # 计算交点z坐标 intersect_z = p1[1] + t * dir_vec[1] # 相对于最后一个表面顶点的位置 image_positions.append(intersect_z - last_surface_z) except Exception as e: print(f"光线追迹错误: {e}") continue # 计算平均像位置(排除异常值) if not image_positions: return None # 使用中心光线的位置(如果可用) if len(image_positions) >= 3: return image_positions[len(image_positions)//2] return np.mean(image_positions) def calculate_actual_image_height(system, image_position=None): """ 计算实际像高(轴外点) :param system: OpticalSystem对象 :param image_position: 像平面位置(如果不提供,则使用理想像距) :return: 实际像高(单位mm) """ # 确定像平面位置 if image_position is None: if system.object_infinite: # 无穷远物:使用理想像距 image_position = calculate.calculate_ideal_image_distance( system.surfaces, system.object_infinite ) else: # 有限远物:计算理想像距 image_position = calculate.calculate_ideal_image_distance( system.surfaces, system.object_infinite, system.object_distance ) # 表面顶点位置(累积厚度) surface_positions = [0.0] for i in range(len(system.surfaces)-1): surface_positions.append(surface_positions[-1] + system.surfaces[i].d) last_surface_z = surface_positions[-1] image_z = last_surface_z + image_position # 追迹主光线(通过入瞳中心) if system.object_infinite: # 无穷远物:主光线通过入瞳中心,与光轴成视场角 field_angle_rad = math.radians(system.field_angle) start_point = np.array([0, system.entrance_pupil_position]) direction = np.array([ math.sin(field_angle_rad), math.cos(field_angle_rad) ]) else: # 有限远物:从物点通过入瞳中心 object_point = np.array([system.object_height, -system.object_distance]) pupil_center = np.array([0, system.entrance_pupil_position]) direction = pupil_center - object_point direction /= np.linalg.norm(direction) start_point = object_point try: # 追迹主光线 path = calculate.trace_actual_ray( system.surfaces, start_point, direction, system.light_type ) if len(path) < 2: return None # 获取最后两个点 p_last = path[-1] # 最后一个表面后的点 p_prev = path[-2] # 最后一个表面上的点 # 光线方向向量 dir_vec = p_last - p_prev dir_vec /= np.linalg.norm(dir_vec) # 计算到达像平面的距离 if abs(dir_vec[1]) < 1e-10: return None t = (image_z - p_last[1]) / dir_vec[1] # 计算交点y坐标(像高) image_height = p_last[0] + t * dir_vec[0] return image_height except Exception as e: print(f"主光线追迹错误: {e}") return None def calculate_spherical_aberration(system, ray_count=3): """ 计算球差 :param system: OpticalSystem对象 :param ray_count: 使用的光线数量 :return: 球差值(单位mm) """ # 计算近轴像位置 if system.object_infinite: # 追迹近轴光线(高度为0) h0 = 0.0 u0 = 0.0 _, u_final = calculate.trace_paraxial_ray(system.surfaces, h0, u0) if abs(u_final) < 1e-10: return None paraxial_image_pos = -h0 / u_final else: # 使用高斯公式计算理想像距 paraxial_image_pos = calculate.calculate_ideal_image_distance( system.surfaces, system.object_infinite, system.object_distance ) # 计算实际边缘光线像位置 actual_image_pos = calculate.calculate_actual_image_position(system, ray_count) if paraxial_image_pos is None or actual_image_pos is None: return None # 球差 = 近轴像位置 - 实际像位置 return paraxial_image_pos - actual_image_pos def calculate_coma(system): """ 计算子午慧差 :param system: OpticalSystem对象 :return: 慧差值(单位mm) """ # 计算实际像位置 image_position = calculate.calculate_actual_image_position(system) if image_position is None: return None # 追迹两条上光线和下光线 entrance_radius = system.entrance_pupil_diameter / 2 if system.object_infinite: # 上光线 upper_start = np.array([entrance_radius, system.entrance_pupil_position]) upper_dir = np.array([ math.sin(math.radians(system.field_angle)), math.cos(math.radians(system.field_angle)) ]) # 下光线 lower_start = np.array([-entrance_radius, system.entrance_pupil_position]) lower_dir = np.array([ math.sin(math.radians(system.field_angle)), math.cos(math.radians(system.field_angle)) ]) else: # 上光线 object_point = np.array([system.object_height, -system.object_distance]) upper_pupil = np.array([entrance_radius, system.entrance_pupil_position]) upper_dir = upper_pupil - object_point upper_dir /= np.linalg.norm(upper_dir) # 下光线 lower_pupil = np.array([-entrance_radius, system.entrance_pupil_position]) lower_dir = lower_pupil - object_point lower_dir /= np.linalg.norm(lower_dir) # 追迹光线 upper_path = calculate.trace_actual_ray(system.surfaces, upper_start, upper_dir, system.light_type) lower_path = calculate.trace_actual_ray(system.surfaces, lower_start, lower_dir, system.light_type) if len(upper_path) < 2 or len(lower_path) < 2: return None # 计算在像平面上的高度差 surface_positions = [0.0] for i in range(len(system.surfaces)-1): surface_positions.append(surface_positions[-1] + system.surfaces[i].d) last_surface_z = surface_positions[-1] image_z = last_surface_z + image_position def calc_image_height(path, image_z): p_last = path[-1] p_prev = path[-2] dir_vec = p_last - p_prev dir_vec /= np.linalg.norm(dir_vec) t = (image_z - p_last[1]) / dir_vec[1] return p_last[0] + t * dir_vec[0] upper_height = calc_image_height(upper_path, image_z) lower_height = calc_image_height(lower_path, image_z) if upper_height is None or lower_height is None: return None # 主光线高度 main_height = calculate.calculate_actual_image_height(system, image_position) if main_height is None: return None # 慧差 = (上光线高度 + 下光线高度)/2 - 主光线高度 return (upper_height + lower_height)/2 - main_height class MainApplication: def __init__(self, root): self.root = root self.root.title("光学系统计算程序") self.root.geometry("1000x850") # 创建光学系统对象 self.system = OpticalSystem() # 创建GUI组件 self.create_widgets() # 加载默认设置(如果有) self.load_default_settings() def create_widgets(self): # 主框架 main_frame = ttk.Frame(self.root) main_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=10) # 文件操作框架 file_frame = ttk.LabelFrame(main_frame, text="文件操作") file_frame.pack(fill=tk.X, padx=5, pady=5) # 文件路径输入 ttk.Label(file_frame, text="文件路径:").grid(row=0, column=0, padx=5, pady=5) self.file_path_entry = ttk.Entry(file_frame, width=50) self.file_path_entry.grid(row=0, column=1, padx=5, pady=5) # 文件操作按钮 browse_btn = ttk.Button(file_frame, text="浏览...", command=self.browse_file) browse_btn.grid(row=0, column=2, padx=5, pady=5) load_btn = ttk.Button(file_frame, text="加载系统参数", command=self.load_system) load_btn.grid(row=0, column=3, padx=5, pady=5) save_btn = ttk.Button(file_frame, text="保存系统参数", command=self.save_system) save_btn.grid(row=0, column=4, padx=5, pady=5) # 左侧面板 - 输入参数 left_frame = ttk.LabelFrame(main_frame, text="系统参数输入") left_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=True, padx=5, pady=5) # 右侧面板 - 结果展示 right_frame = ttk.LabelFrame(main_frame, text="计算结果") right_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5) # 创建左侧面板的子组件 self.create_input_panel(left_frame) # 创建右侧面板的子组件 self.create_result_panel(right_frame) # 计算按钮 calc_frame = ttk.Frame(main_frame) calc_frame.pack(fill=tk.X, padx=5, pady=10) calc_btn = ttk.Button(calc_frame, text="开始计算", command=self.calculate, width=15) calc_btn.pack(side=tk.LEFT, padx=10) save_result_btn = ttk.Button(calc_frame, text="保存计算结果", command=self.save_results, width=15) save_result_btn.pack(side=tk.LEFT, padx=10) clear_btn = ttk.Button(calc_frame, text="清除所有", command=self.clear_all, width=15) clear_btn.pack(side=tk.LEFT, padx=10) def browse_file(self): """浏览文件按钮处理函数""" file_path = filedialog.askopenfilename( title="选择文件", filetypes=[("JSON文件", "*.json"), ("所有文件", "*.*")] ) if file_path: self.file_path_entry.delete(0, tk.END) self.file_path_entry.insert(0, file_path) def create_input_panel(self, parent): # 入瞳参数 pupil_frame = ttk.LabelFrame(parent, text="入瞳参数") pupil_frame.pack(fill=tk.X, padx=5, pady=5) ttk.Label(pupil_frame, text="入瞳直径 (mm):").grid(row=0, column=0, padx=5, pady=5, sticky="w") self.entrance_diameter_entry = ttk.Entry(pupil_frame, width=15) self.entrance_diameter_entry.grid(row=0, column=1, padx=5, pady=5) ttk.Label(pupil_frame, text="入瞳位置 (mm):").grid(row=0, column=2, padx=5, pady=5, sticky="w") self.entrance_position_entry = ttk.Entry(pupil_frame, width=15) self.entrance_position_entry.grid(row=0, column=3, padx=5, pady=5) # 色光类型选择 ttk.Label(pupil_frame, text="色光类型:").grid(row=1, column=0, padx=5, pady=5, sticky="w") self.light_type_var = tk.StringVar(value="d") self.light_type_combo = ttk.Combobox(pupil_frame, textvariable=self.light_type_var, width=12, state="readonly") self.light_type_combo["values"] = ("d", "f", "c") self.light_type_combo.grid(row=1, column=1, padx=5, pady=5, sticky="w") # 物方参数 object_frame = ttk.LabelFrame(parent, text="物方参数") object_frame.pack(fill=tk.X, padx=5, pady=5) # 物距选择 self.object_var = tk.BooleanVar(value=True) # True: 无穷远, False: 有限远 ttk.Radiobutton(object_frame, text="物在无穷远", variable=self.object_var, value=True, command=self.toggle_object_input).grid(row=0, column=0, padx=5, pady=5) ttk.Radiobutton(object_frame, text="物在有限远", variable=self.object_var, value=False, command=self.toggle_object_input).grid(row=0, column=1, padx=5, pady=5) # 无穷远参数 self.infinite_frame = ttk.Frame(object_frame) self.infinite_frame.grid(row=1, column=0, columnspan=2, sticky="w", padx=5, pady=5) ttk.Label(self.infinite_frame, text="半视场角 (度):").grid(row=0, column=0, padx=5, pady=5, sticky="w") self.field_angle_entry = ttk.Entry(self.infinite_frame, width=15) self.field_angle_entry.grid(row=0, column=1, padx=5, pady=5) # 有限远参数 (初始隐藏) self.finite_frame = ttk.Frame(object_frame) self.finite_frame.grid(row=1, column=0, columnspan=2, sticky="w", padx=5, pady=5) self.finite_frame.grid_remove() # 初始隐藏 ttk.Label(self.finite_frame, text="物距 (mm):").grid(row=0, column=0, padx=5, pady=5, sticky="w") self.object_distance_entry = ttk.Entry(self.finite_frame, width=15) self.object_distance_entry.grid(row=0, column=1, padx=5, pady=5) ttk.Label(self.finite_frame, text="物高 (mm):").grid(row=0, column=2, padx=5, pady=5, sticky="w") self.object_height_entry = ttk.Entry(self.finite_frame, width=15) self.object_height_entry.grid(row=0, column=3, padx=5, pady=5) ttk.Label(self.finite_frame, text="孔径角 (度):").grid(row=0, column=4, padx=5, pady=5, sticky="w") self.aperture_angle_entry = ttk.Entry(self.finite_frame, width=15) self.aperture_angle_entry.grid(row=0, column=5, padx=5, pady=5) # 光学表面输入 surface_frame = ttk.LabelFrame(parent, text="光学表面参数") surface_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5) # 表面输入控件 input_frame = ttk.Frame(surface_frame) input_frame.pack(fill=tk.X, padx=5, pady=5) ttk.Label(input_frame, text="曲率半径 (mm):").grid(row=0, column=0, padx=5, pady=5) self.radius_entry = ttk.Entry(input_frame, width=10) self.radius_entry.grid(row=0, column=1, padx=5, pady=5) self.radius_entry.insert(0, "50") ttk.Label(input_frame, text="厚度 (mm):").grid(row=0, column=2, padx=5, pady=5) self.thickness_entry = ttk.Entry(input_frame, width=10) self.thickness_entry.grid(row=0, column=3, padx=5, pady=5) self.thickness_entry.insert(0, "5") ttk.Label(input_frame, text="折射率 (nd):").grid(row=0, column=4, padx=5, pady=5) self.nd_entry = ttk.Entry(input_frame, width=10) self.nd_entry.grid(row=0, column=5, padx=5, pady=5) self.nd_entry.insert(0, "1.5") ttk.Label(input_frame, text="阿贝数 (vd):").grid(row=0, column=6, padx=5, pady=5) self.vd_entry = ttk.Entry(input_frame, width=10) self.vd_entry.grid(row=0, column=7, padx=5, pady=5) self.vd_entry.insert(0, "60") button_frame = ttk.Frame(input_frame) button_frame.grid(row=0, column=8, padx=10) add_btn = ttk.Button(button_frame, text="添加表面", command=self.add_surface) add_btn.pack(side=tk.LEFT, padx=5) remove_btn = ttk.Button(button_frame, text="删除表面", command=self.remove_surface) remove_btn.pack(side=tk.LEFT, padx=5) # 表面列表 list_frame = ttk.Frame(surface_frame) list_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5) columns = ("#", "曲率半径 (mm)", "厚度 (mm)", "折射率 (nd)", "阿贝数 (vd)") self.surface_tree = ttk.Treeview(list_frame, columns=columns, show="headings", height=8) for col in columns: self.surface_tree.heading(col, text=col) self.surface_tree.column(col, width=100, anchor=tk.CENTER) vsb = ttk.Scrollbar(list_frame, orient="vertical", command=self.surface_tree.yview) self.surface_tree.configure(yscrollcommand=vsb.set) self.surface_tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) vsb.pack(side=tk.RIGHT, fill=tk.Y) def create_result_panel(self, parent): # 结果文本框 self.result_text = tk.Text(parent, wrap=tk.WORD) result_scroll_y = ttk.Scrollbar(parent, orient="vertical", command=self.result_text.yview) result_scroll_x = ttk.Scrollbar(parent, orient="horizontal", command=self.result_text.xview) self.result_text.configure(yscrollcommand=result_scroll_y.set, xscrollcommand=result_scroll_x.set) result_scroll_y.pack(side=tk.RIGHT, fill=tk.Y) result_scroll_x.pack(side=tk.BOTTOM, fill=tk.X) self.result_text.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) # 设置初始文本 self.result_text.insert(tk.END, "计算结果将显示在此处...\n\n") self.result_text.configure(state=tk.DISABLED) def toggle_object_input(self): """切换物方参数输入界面""" if self.object_var.get(): # 无穷远 self.infinite_frame.grid() self.finite_frame.grid_remove() else: # 有限远 self.infinite_frame.grid_remove() self.finite_frame.grid() def add_surface(self): """添加光学表面""" try: # 获取输入值 r = self.radius_entry.get().strip() d = self.thickness_entry.get().strip() nd = self.nd_entry.get().strip() vd = self.vd_entry.get().strip() # 处理输入值 r = float(r) if r and r.lower() != "inf" else float('inf') d = float(d) if d else 0.0 nd = float(nd) if nd else 1.0 vd = float(vd) if vd else 0.0 # 添加到系统 surface = Surface(r, d, nd, vd) self.system.surfaces.append(surface) # 添加到树形视图 r_str = "平面" if r == float('inf') else f"{r:.2f}" self.surface_tree.insert("", "end", values=( len(self.system.surfaces), r_str, f"{d:.2f}", f"{nd:.4f}", f"{vd:.1f}" )) # 清空输入框 self.radius_entry.delete(0, tk.END) self.thickness_entry.delete(0, tk.END) self.nd_entry.delete(0, tk.END) self.vd_entry.delete(0, tk.END) self.radius_entry.focus_set() except ValueError: messagebox.showerror("输入错误", "请输入有效的数字") def remove_surface(self): """删除选中的光学表面""" selected = self.surface_tree.selection() if selected: # 从树形视图中删除 for item in selected: index = int(self.surface_tree.item(item, "values")[0]) - 1 self.surface_tree.delete(item) # 从系统中删除 if 0 <= index < len(self.system.surfaces): self.system.surfaces.pop(index) # 更新剩余表面的序号 for i, item in enumerate(self.surface_tree.get_children()): values = list(self.surface_tree.item(item, "values")) values[0] = i + 1 self.surface_tree.item(item, values=values) def load_system(self): """加载系统参数文件""" file_path = self.file_path_entry.get().strip() if not file_path: messagebox.showwarning("警告", "请输入文件路径") return try: with open(file_path, 'r') as f: data = json.load(f) # 加载系统参数 self.system.entrance_pupil_diameter = data.get("entrance_pupil_diameter") self.system.entrance_pupil_position = data.get("entrance_pupil_position") self.system.object_infinite = data.get("object_infinite", True) self.system.field_angle = data.get("field_angle") self.system.object_distance = data.get("object_distance") self.system.object_height = data.get("object_height") self.system.aperture_angle = data.get("aperture_angle") # 更新UI中的参数值 if self.system.entrance_pupil_diameter is not None: self.entrance_diameter_entry.delete(0, tk.END) self.entrance_diameter_entry.insert(0, str(self.system.entrance_pupil_diameter)) if self.system.entrance_pupil_position is not None: self.entrance_position_entry.delete(0, tk.END) self.entrance_position_entry.insert(0, str(self.system.entrance_pupil_position)) self.object_var.set(self.system.object_infinite) self.toggle_object_input() if self.system.field_angle is not None: self.field_angle_entry.delete(0, tk.END) self.field_angle_entry.insert(0, str(self.system.field_angle)) if self.system.object_distance is not None: self.object_distance_entry.delete(0, tk.END) self.object_distance_entry.insert(0, str(self.system.object_distance)) if self.system.object_height is not None: self.object_height_entry.delete(0, tk.END) self.object_height_entry.insert(0, str(self.system.object_height)) if self.system.aperture_angle is not None: self.aperture_angle_entry.delete(0, tk.END) self.aperture_angle_entry.insert(0, str(self.system.aperture_angle)) # 加载表面数据 self.system.surfaces = [] self.surface_tree.delete(*self.surface_tree.get_children()) surfaces_data = data.get("surfaces", []) for surf_data in surfaces_data: surface = Surface.from_dict(surf_data) self.system.surfaces.append(surface) r_str = "平面" if surface.r == float('inf') else f"{surface.r:.2f}" self.surface_tree.insert("", "end", values=( len(self.system.surfaces), r_str, f"{surface.d:.2f}", f"{surface.nd:.4f}", f"{surface.vd:.1f}" )) messagebox.showinfo("成功", f"系统参数已从 {os.path.basename(file_path)} 加载") # 显示加载的系统信息 self.result_text.configure(state=tk.NORMAL) self.result_text.delete(1.0, tk.END) self.result_text.insert(tk.END, f"已加载系统参数文件: {file_path}\n") self.result_text.insert(tk.END, f"包含 {len(self.system.surfaces)} 个光学表面\n") self.result_text.configure(state=tk.DISABLED) except FileNotFoundError: messagebox.showerror("错误", f"文件不存在: {file_path}") except Exception as e: messagebox.showerror("加载错误", f"加载文件失败: {str(e)}") def save_system(self): """保存系统参数文件""" # 更新系统参数 if not self.update_system_from_ui(): return # 如果没有表面数据,提示用户 if not self.system.surfaces: messagebox.showwarning("警告", "没有光学表面数据,无法保存") return file_path = self.file_path_entry.get().strip() if not file_path: messagebox.showwarning("警告", "请输入保存路径") return try: # 准备保存数据 data = { "entrance_pupil_diameter": self.system.entrance_pupil_diameter, "entrance_pupil_position": self.system.entrance_pupil_position, "object_infinite": self.system.object_infinite, "field_angle": self.system.field_angle, "object_distance": self.system.object_distance, "object_height": self.system.object_height, "aperture_angle": self.system.aperture_angle, "surfaces": [surf.to_dict() for surf in self.system.surfaces] } with open(file_path, 'w') as f: json.dump(data, f, indent=4) messagebox.showinfo("成功", f"系统参数已保存到 {os.path.basename(file_path)}") # 显示保存信息 self.result_text.configure(state=tk.NORMAL) self.result_text.insert(tk.END, f"系统参数已保存到: {file_path}\n") self.result_text.configure(state=tk.DISABLED) except Exception as e: messagebox.showerror("保存错误", f"保存文件失败: {str(e)}") def save_results(self): """保存计算结果到文件""" if not self.system.results or all(v is None for v in self.system.results.values()): messagebox.showwarning("警告", "没有计算结果可保存") return file_path = filedialog.asksaveasfilename( title="保存计算结果", defaultextension=".txt", filetypes=[("文本文件", "*.txt"), ("所有文件", "*.*")] ) if not file_path: return try: with open(file_path, 'w') as f: # 写入系统参数摘要 f.write("===== 光学系统参数 =====\n") f.write(f"入瞳直径: {self.system.entrance_pupil_diameter} mm\n") f.write(f"入瞳位置: {self.system.entrance_pupil_position} mm\n") f.write(f"色光类型: {self.system.light_type}\n") f.write("物距类型: " + ("无穷远" if self.system.object_infinite else "有限远") + "\n") if self.system.object_infinite: f.write(f"半视场角: {self.system.field_angle} 度\n") else: f.write(f"物距: {self.system.object_distance} mm\n") f.write(f"物高: {self.system.object_height} mm\n") f.write(f"孔径角: {self.system.aperture_angle} 度\n") f.write("\n光学表面参数:\n") for i, surf in enumerate(self.system.surfaces): r_str = "平面" if surf.r == float('inf') else f"{surf.r:.2f} mm" f.write(f"表面 {i+1}: r={r_str}, d={surf.d:.2f} mm, nd={surf.nd:.4f}, vd={surf.vd:.1f}\n") # 写入计算结果 f.write("\n\n===== 计算结果 =====\n") for key, value in self.system.results.items(): if value is not None: # 格式化键名 label = self.format_result_label(key) f.write(f"{label}: {value}\n") messagebox.showinfo("成功", f"计算结果已保存到 {os.path.basename(file_path)}") # 显示保存信息 self.result_text.configure(state=tk.NORMAL) self.result_text.insert(tk.END, f"计算结果已保存到: {file_path}\n") self.result_text.configure(state=tk.DISABLED) except Exception as e: messagebox.showerror("保存错误", f"保存计算结果失败: {str(e)}") def format_result_label(self, key): """格式化结果标签为中文描述""" labels = { "focal_length": "焦距 f' (mm)", "ideal_image_distance": "理想像距 l' (mm)", "actual_image_position": "实际像位置 (mm)", "image_principal_plane": "像方主面位置 lH' (mm)", "exit_pupil_distance": "出瞳距 lp' (mm)", "ideal_image_height": "理想像高 y0' (mm)", "spherical_aberration": "球差 (mm)", "longitudinal_chromatic": "位置色差 (mm)", "tangential_field_curvature": "子午场曲 xt' (mm)", "sagittal_field_curvature": "弧矢场曲 xs' (mm)", "astigmatism": "像散 Δxts' (mm)", "actual_image_height": "实际像高 (mm)", "relative_distortion": "相对畸变 (%)", "absolute_distortion": "绝对畸变 (mm)", "lateral_chromatic": "倍率色差 (mm)", "tangential_coma": "子午慧差 (mm)" } return labels.get(key, key) def update_system_from_ui(self): """从UI更新系统参数""" try: # 入瞳参数 if self.entrance_diameter_entry.get(): self.system.entrance_pupil_diameter = float(self.entrance_diameter_entry.get()) if self.entrance_position_entry.get(): self.system.entrance_pupil_position = float(self.entrance_position_entry.get()) # 色光类型 self.system.light_type = self.light_type_var.get() # 物方参数 self.system.object_infinite = self.object_var.get() if self.system.object_infinite: if self.field_angle_entry.get(): self.system.field_angle = float(self.field_angle_entry.get()) else: if self.object_distance_entry.get(): self.system.object_distance = float(self.object_distance_entry.get()) if self.object_height_entry.get(): self.system.object_height = float(self.object_height_entry.get()) if self.aperture_angle_entry.get(): self.system.aperture_angle = float(self.aperture_angle_entry.get()) except ValueError: messagebox.showerror("输入错误", "请输入有效的数字") return False return True def calculate(self): """执行光学计算""" # 更新系统参数 if not self.update_system_from_ui(): return # 检查必要参数 if not self.system.surfaces: messagebox.showwarning("警告", "请至少添加一个光学表面") return if self.system.entrance_pupil_diameter is None: messagebox.showwarning("警告", "请输入入瞳直径") return if self.system.object_infinite and self.system.field_angle is None: messagebox.showwarning("警告", "请输入半视场角") return if not self.system.object_infinite and ( self.system.object_distance is None or self.system.object_height is None or self.system.aperture_angle is None ): messagebox.showwarning("警告", "请输入完整的有限远参数") return # 执行计算 - 这里调用您的计算函数 self.perform_calculations() # 显示结果 self.display_results() # 显示计算完成消息 messagebox.showinfo("计算完成", "光学计算已完成,结果已显示在结果区域") def perform_calculations(self): """执行光学计算 - 这里调用您的实际计算函数""" # 重置结果 for key in self.system.results: self.system.results[key] = None # 示例:设置一些假结果用于演示 # 计算焦距 focal_length = calculate.calculate_focal_length(self.system.surfaces) self.system.results["focal_length"] = focal_length # 计算主面位置 principal_plane = calculate.calculate_principal_plane_position(self.system.surfaces) self.system.results["image_principal_plane"] = principal_plane # 计算理想像距 ideal_image_distance = calculate.calculate_ideal_image_distance( self.system.surfaces, self.system.object_infinite, self.system.object_distance ) self.system.results["ideal_image_distance"] = ideal_image_distance +principal_plane # 计算出瞳距 if self.system.entrance_pupil_position is not None: exit_pupil_distance = calculate.calculate_exit_pupil_distance( self.system.surfaces, self.system.entrance_pupil_position ) self.system.results["exit_pupil_distance"] = exit_pupil_distance # 计算理想像高 ideal_image_height = calculate.calculate_ideal_image_height(self.system) self.system.results["ideal_image_height"] = ideal_image_height #计算实际像位置 actual_image_position = calculate.calculate_actual_image_position(self.system) self.system.results["actual_image_position"] = actual_image_position #计算实际像高 self.system.results["actual_image_height"] = calculate.calculate_actual_image_height( self.system, actual_image_position ) #计算球差 self.system.results["spherical_aberration"] = calculate.calculate_spherical_aberration(self.system) # 实际应用中,您需要调用您自己的计算函数 ##self.system.results["focal_length"] = 50.0 ##self.system.results["ideal_image_distance"] = 48.5 # self.system.results["actual_image_position"] = 48.7 ##self.system.results["image_principal_plane"] = -1.2 ##self.system.results["exit_pupil_distance"] = 45.3 ##self.system.results["ideal_image_height"] = 10.2 #self.system.results["spherical_aberration"] = 0.05 self.system.results["longitudinal_chromatic"] = 0.02 self.system.results["tangential_field_curvature"] = 0.15 self.system.results["sagittal_field_curvature"] = 0.12 self.system.results["astigmatism"] = 0.03 #self.system.results["actual_image_height"] =0 self.system.results["relative_distortion"] = -0.5 self.system.results["absolute_distortion"] = -0.05 self.system.results["lateral_chromatic"] = 0.01 self.system.results["tangential_coma"] = 0.04 def display_results(self): """在结果文本框中显示计算结果""" self.result_text.configure(state=tk.NORMAL) self.result_text.delete(1.0, tk.END) # 添加系统参数摘要 self.result_text.insert(tk.END, "===== 光学系统参数 =====\n", "title") self.result_text.insert(tk.END, f"入瞳直径: {self.system.entrance_pupil_diameter} mm\n") self.result_text.insert(tk.END, f"入瞳位置: {self.system.entrance_pupil_position} mm\n") self.result_text.insert(tk.END, "物距类型: " + ("无穷远" if self.system.object_infinite else "有限远") + "\n") self.result_text.insert(tk.END, f"色光类型: {self.system.light_type}\n") if self.system.object_infinite: self.result_text.insert(tk.END, f"半视场角: {self.system.field_angle} 度\n") else: self.result_text.insert(tk.END, f"物距: {self.system.object_distance} mm\n") self.result_text.insert(tk.END, f"物高: {self.system.object_height} mm\n") self.result_text.insert(tk.END, f"孔径角: {self.system.aperture_angle} 度\n") self.result_text.insert(tk.END, "\n光学表面参数:\n") for i, surf in enumerate(self.system.surfaces): r_str = "平面" if surf.r == float('inf') else f"{surf.r:.2f} mm" self.result_text.insert(tk.END, f"表面 {i+1}: r={r_str}, d={surf.d:.2f} mm, nd={surf.nd:.4f}, vd={surf.vd:.1f}\n") # 添加计算结果 self.result_text.insert(tk.END, "\n\n===== 计算结果 =====\n", "title") # 计算关键结果 key_results = [ "focal_length", "ideal_image_distance", "actual_image_position", "image_principal_plane", "exit_pupil_distance", "ideal_image_height" ] for key in key_results: if self.system.results[key] is not None: label = self.format_result_label(key) self.result_text.insert(tk.END, f"{label}: {self.system.results[key]}\n") # 添加像差结果 self.result_text.insert(tk.END, "\n像差分析:\n", "subtitle") aberrations = [ "spherical_aberration", "longitudinal_chromatic", "tangential_field_curvature", "sagittal_field_curvature", "astigmatism", "actual_image_height", "relative_distortion", "absolute_distortion", "lateral_chromatic", "tangential_coma" ] for key in aberrations: if self.system.results[key] is not None: label = self.format_result_label(key) self.result_text.insert(tk.END, f"{label}: {self.system.results[key]}\n") self.result_text.configure(state=tk.DISABLED) def clear_all(self): """清除所有输入和结果""" # 清除系统参数 self.system = OpticalSystem() # 清除UI输入 self.file_path_entry.delete(0, tk.END) self.entrance_diameter_entry.delete(0, tk.END) self.entrance_position_entry.delete(0, tk.END) self.field_angle_entry.delete(0, tk.END) self.object_distance_entry.delete(0, tk.END) self.object_height_entry.delete(0, tk.END) self.aperture_angle_entry.delete(0, tk.END) self.radius_entry.delete(0, tk.END) self.radius_entry.insert(0, "50") self.thickness_entry.delete(0, tk.END) self.thickness_entry.insert(0, "5") self.nd_entry.delete(0, tk.END) self.nd_entry.insert(0, "1.5") self.vd_entry.delete(0, tk.END) self.vd_entry.insert(0, "60") # 清除表面列表 self.surface_tree.delete(*self.surface_tree.get_children()) self.system.surfaces = [] # 清除结果 self.result_text.configure(state=tk.NORMAL) self.result_text.delete(1.0, tk.END) self.result_text.insert(tk.END, "计算结果将显示在此处...\n\n") self.result_text.configure(state=tk.DISABLED) # 重置物距类型 self.object_var.set(True) self.toggle_object_input() messagebox.showinfo("清除完成", "所有输入和结果已清除") def load_default_settings(self): """加载默认设置(可选)""" # 这里可以添加加载默认设置的逻辑 pass if __name__ == "__main__": root = tk.Tk() app = MainApplication(root) # 设置文本样式 app.result_text.tag_config("title", font=("Arial", 10, "bold")) app.result_text.tag_config("subtitle", font=("Arial", 9, "bold")) root.mainloop() 实际像位置和实际像高计算错误,请指出问题在哪里,并修改
最新发布
06-27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值