重新审视大端和小端

以前汇编课上讲过,但是我发现还不够。。。下面全面介绍了大端和小端。

 

大端和小端的历史:

一般吃鸡蛋都是打破鸡蛋大的一端再吃,但是有一次,一个国家的国王打鸡蛋时把手指弄破了,后来,他下令:以后打鸡蛋都从小端开始打。

为了讽刺这件事,就有了大端和小端的概念。

 

如果一个对象跨越多字节连续存储,则最小的地址就是对象的地址。

比如一个int,在32位和64位机器中都是4字节,如果对象地址为0x100,则整个int占据0x100,0x101,0x102,0x103.

我们都知道&符号,假如int x;  &x就为x的地址,即0x100.

[31,30,29,.....1,0]为有效位数,最高有效位为31,最低有效位为0。

小端法:最低有效位存在最前面。

                 0x100                                       0x101

---------------------------------------------------------------------------------------------------

|  7,6,5,4,3,2,1,0  |  15,14,13,12,11,10,9,8  | ....

----------------------------------------------------------------------------------------------------

大端法:最高有效位存在最前面。

      0x100                                       0x101

---------------------------------------------------------------------------------------------------

|  31,30,29,28,27,26,25,24| 23,22,21,20,19,18,17,16| ....

----------------------------------------------------------------------------------------------------

这两张图的对比就很明显的看出区别,就比如int x=2; 转换为16进制为0x00 00 00 02;

小端的存放顺序为:

     0x100         0x101        0x102       0x103

----------------------------------------------------

|     02      |       00      |      00      |      00      |

----------------------------------------------------

上面已经说过&x取得的是0x100,一般情况下程序员是看不出字节顺序的区别的。

在linux32中,结果为小端存储。

以下是检测大端小端的代码,

记住*****:我们要检测大端小端,必须要把他转化为unsigned char * ch才可以。因为这个ch[i]是一个字节。

 

--------------------------------------------------------------------------------------------------------------------

int x=0x12345678;

unsigned char *val=(unsigned char *)&x;   //x的地址。

val[0] 为val的地址只指向的字节。

 

 

 

import binascii import serial import time import struct import queue import threading from datetime import datetime CanOBDItemList = [] CanPGNItemList = [[0,0,0,0]] filteredCanOBDItemList = [] Frame_start = b’\xFF’ Frame_end = b’\x55’ Frame_data_style_len = 6 Frame_Data_Len = 0 frame_buffer = bytearray() class CanInfShow_Item: def int(self,CanID,CanFramType,Len,CanDataInf): self.SystemCycle = datetime.strftime(“%Y-%m-%d %H:%M:%S.%f”)[:-3], self.CanID = CanID, self.CanFrame = CanFramType, self.CanDataLen = Len, self.CanData = CanDataInf class CanPGNShow_Item: def int(self, PGNID, CanID, CanData, Signal): self.PGNID = PGNID, self.CanID = CanID, self.CanData = CanData, self.Signal = Signal class SerialPort: def init(self, port, baudrate): 初始化串口参数 self.port = port self.baudrate = baudrate self.ser = serial.Serial( port=self.port, baudrate=self.baudrate, bytesize=serial.EIGHTBITS, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE ) 等待串口连接稳定 self.last_data_time = time.time() # 新增:最后接收数据的时间戳 self.cycle_dict = {} # 存储{帧ID: [上次时间戳, 当前周期]} self.last_frame_time = {} # 存储每个ID的最后出现时间 self.data_updated_ids = set() # 存储数据变化的CAN ID self.new_added_ids = set() # 存储新增的CAN ID self.last_data_dict = {} # 存储每个CAN ID的上一次数据 self.changed_bytes_dict = {} # 存储每个CAN ID的变化字节索引 self.last_pgn_data_dict = {} # 存储每个PGN ID的上一次数据 self.changed_pgn_bytes_dict = {} # 存储每个PGN ID的变化字节索引 self.state = 0 self.current_frame = bytearray() self.expected_length = 0 self.raw_data_queue = queue.Queue(maxsize=10000) self.data_lock = threading.Lock() self.worker_threads = [] self.allowed_pgn_ids = {0xFEF1, 0xF004, 0xFEC1, 0xFEE5, 0xFEEE, 0xFE56, 0xFEF2, 0xF005} self.filter_cycles = [] # 添加这一行用于存储过滤周期 time.sleep(0.2) if not self.ser.isOpen(): print(“串口打开失败!”) def close(self): # 关闭串口连接 if self.ser.isOpen(): self.ser.close() def send(self, data): # 发送数据 if self.ser.isOpen(): try: self.ser.write(data.encode(‘utf-8’)) except serial.SerialException as e: print(f"发送数据失败: {e}“) def recv(self, chunk_size=1024): if self.ser.isOpen(): # 每次最多读取1024字节 data = self.ser.read(min(self.ser.inWaiting(), chunk_size)) if data: self.last_data_time = time.time() return data return None def del(self): self.close() def SerialIsOpen(self): if self.ser.isOpen(): return 1 else: return 0 def start_reading(self): self.recv_thread = threading.Thread(target=self._recv_worker, daemon=True) self.parse_thread = threading.Thread(target=self._parse_worker, daemon=True) self.recv_thread.start() self.parse_thread.start() self.worker_threads = [self.recv_thread, self.parse_thread] def _recv_worker(self): while self.ser.isOpen(): data = self.recv(chunk_size=4096) # 每次最多读4KB if data: self.raw_data_queue.put(data) # else: # time.sleep(0.001) def _parse_worker(self): while True: try: data = self.raw_data_queue.get(timeout=0.1) print(“十六进制数据:”, data.hex()) for byte in data: self.process_byte(byte) except queue.Empty: continue def process_byte(self, byte): “”” 使用状态机逐字节解析帧结构。 “”" if self.state == 0: # 等待帧头 FF if byte == 0xFF: self.current_frame.append(byte) self.state = 1 else: # 如果不是帧头,忽略该字节 pass elif self.state == 1: # 等待帧头 55 if byte == 0x55: self.current_frame.append(byte) self.state = 2 else: # 如果第二字节不是55,重置 self.reset_state() elif self.state == 2: # 接收总长度低位 (第2字节) self.current_frame.append(byte) self.state = 3 elif self.state == 3: # 接收总长度高位 (第3字节) self.current_frame.append(byte) # 计算总长度(从第2字节开始) length_high = self.current_frame[2] length_low = byte self.expected_length = (length_high << 8) | length_low self.state = 4 elif self.state == 4: # 接收类型字段 (第4字节) self.current_frame.append(byte) self.state = 5 elif self.state == 5: # 接收保留字段 (第5字节) self.current_frame.append(byte) self.state = 6 elif self.state == 6: # 接收 CAN 通道类型 (第6字节) self.current_frame.append(byte) self.state = 7 elif self.state == 7: # 接收 CAN 报文个数 N (第7字节) self.current_frame.append(byte) self.num_messages = byte self.state = 8 self.messages_received = 0 elif self.state == 8: #接收can报文 self.current_frame.append(byte) self.messages_received += 1 if self.messages_received == self.num_messages * 12: self.state = 9 elif self.state == 9: # 接收校验位 self.current_frame.append(byte) self.state = 10 elif self.state == 10: # 完整帧已接收,验证校验 if self.verify_checksum(): print(“完整帧数据:”, self.current_frame.hex()) self.Frame_analoy_process(bytes(self.current_frame)) else: print(“校验失败,丢弃当前帧”) self.reset_state() def verify_checksum(self): “”" 验证校验:从第2字节到倒数第二个字节之 & 0xFF “”" data_to_check = self.current_frame[2:-1] # 从第2字节到最后一个校验位之前 checksum = sum(data_to_check) & 0xFF return checksum == self.current_frame[-1] def reset_state(self): “”" 重置状态机 “”" self.state = 0 self.current_frame = bytearray() self.expected_length = 0 self.messages_received = 0 def set_filter_cycles(self, cycles): self.filter_cycles = cycles.copy() if cycles else [] #报文解析 def Frame_analoy_process(self, Framedata): # 检查帧类型 (0x0C 0x98) if len(Framedata) < 8 or Framedata[4] != 0x0C or Framedata[5] != 0x98: return try: FrameNum = int(Framedata[7]) except IndexError: return # 检查是否有足够数据 if len(Framedata) < 12 * FrameNum + 8: return current_time = time.time() # 获取当前精确时间戳 for index in range(0,FrameNum): # 时间戳 Cantime = datetime.now().strftime(“%Y-%m-%d %H:%M:%S.%f”)[:-3] try: id_bytes = [ Framedata[12 * index + 11], # LSB Framedata[12 * index + 10], Framedata[12 * index + 9], Framedata[12 * index + 8] # MSB ] except IndexError: continue # 格式化为8位大写十六进制 CanID = ‘’.join(format(b, ‘02X’) for b in id_bytes) # 提取ID字节 CanFramType = “Cycle” Len = 8 CanDataSpace = ‘’ PGNdata = ‘’ PGNID = int(Framedata[12 * index + 9] ) + int(Framedata[12 * index + 10]* 0x100) PGNSignl = self.Frame_analoy_PGN_Signal(PGNID,Framedata[12 * index + 12:]) # 提取数据部分 PGNdata = ‘’.join( format(Framedata[12 * index + 12 + posindex], ‘02X’) for posindex in range(8) ).upper() try: CanDataSpace = ’ ‘.join( format(Framedata[12 * index + 12 + posindex], ‘02X’) for posindex in range(8) ) except IndexError: continue current_data = CanDataSpace.split() if CanID in self.last_data_dict: last_data = self.last_data_dict[CanID].split() changed_indices = [] for i in range(min(len(last_data), len(current_data))): if last_data[i] != current_data[i]: changed_indices.append(i) self.changed_bytes_dict[CanID] = changed_indices else: self.changed_bytes_dict[CanID] = [] # 新ID无变化 self.last_data_dict[CanID] = CanDataSpace CanItemData = [Cantime, CanID, CanFramType, Len, CanDataSpace] # print(CanDataSpace) # ✅ 只有在白名单内的PGNID才处理PGN信号 # 获取当前PGN数据 current_pgn_data = PGNdata # 使用上面生成的两位格式数据 # 检查数据变化 if PGNID in self.last_pgn_data_dict: last_data = self.last_pgn_data_dict[PGNID] changed_indices = [] for i in range(min(len(last_data), len(current_pgn_data) // 2)): start_idx = i * 2 end_idx = start_idx + 2 if last_data[start_idx:end_idx] != current_pgn_data[start_idx:end_idx]: changed_indices.append(i) self.changed_pgn_bytes_dict[PGNID] = changed_indices else: self.changed_pgn_bytes_dict[PGNID] = [] # 新PGN ID无变化 self.last_pgn_data_dict[PGNID] = current_pgn_data if PGNID in self.allowed_pgn_ids: PGNSignl = self.Frame_analoy_PGN_Signal(PGNID, Framedata[12 * index + 12:]) SignalItemData = [hex(PGNID)[2:].upper(), CanID, PGNdata, PGNSignl] if all(not sublist for sublist in CanPGNItemList) or CanPGNItemList[0][0] == 0: if len(CanPGNItemList): CanPGNItemList.pop(0) CanPGNItemList.insert(0, SignalItemData) else: Listpos = self.find_in_2d_list(CanPGNItemList, CanID) if Listpos is not None: CanPGNItemList[Listpos[0]] = SignalItemData else: CanPGNItemList.append(SignalItemData) if CanID in self.last_frame_time: last_time = self.last_frame_time[CanID] cycle = (current_time - last_time) * 1000 # 转换为毫秒 if cycle > 40: if cycle<self.cycle_dict[CanID] : self.cycle_dict[CanID] = cycle/2 elif self.cycle_dict[CanID] == 0 : self.cycle_dict[CanID] = cycle/2 else: self.cycle_dict[CanID] = 0 # 首次出现,周期设为0 if “18F00F52” in self.cycle_dict: print(self.cycle_dict[“18F00F52”]) self.last_frame_time[CanID] = current_time # 更新列表 filtered_cycles = getattr(self, ‘filter_cycles’, []) is_filtered = False if filtered_cycles: for filter_cycle in filtered_cycles: tolerance = filter_cycle * 0.15 # 允许±15%的容差 if abs(self.cycle_dict[CanID] - filter_cycle) <= tolerance: is_filtered = True break # 根据过滤状态更新相应的列表 if is_filtered: # 更新到filteredCanOBDItemList Listpos = self.find_in_2d_list(filteredCanOBDItemList, CanID) if Listpos is not None: filteredCanOBDItemList[Listpos[0]] = CanItemData self.data_updated_ids.add(CanID) else: filteredCanOBDItemList.append(CanItemData) self.new_added_ids.add(CanID) else: # 更新到CanOBDItemList Listpos = self.find_in_2d_list(CanOBDItemList, CanID) if Listpos is not None: CanOBDItemList[Listpos[0]] = CanItemData self.data_updated_ids.add(CanID) else: CanOBDItemList.append(CanItemData) self.new_added_ids.add(CanID) # self.last_data_time = time.time() # 解析到有效帧时更新时间 def find_in_2d_list(self,matrix, target): for i, row in enumerate(matrix): if any(x == target for x in row): return (i, row.index(target)) # 使用row.index()找到具体列的索引 return None def Frame_analoy_PGN_Signal(self, PGNID, Framedata): # 确保数据是整数列表(0-255) if not all(isinstance(x, int) for x in Framedata): Framedata = [int(x) for x in Framedata] # 根据J1939规范解析 if PGNID == 0xFEF1: # 车速 (CCVS1) # 位置2-3 (索引1-2),大端序,单位1/256 km/h raw_val = (Framedata[1] << 8) | Framedata[2] return raw_val / 256.0 elif PGNID == 0xFE6C: # 车速 (TCO1) - 新增 # 位置7-8 (索引6-7),大端序,单位1/256 km/h raw_val = (Framedata[6] << 8) | Framedata[7] return raw_val / 256.0 elif PGNID == 0xF004: # 发动机转速+负载 # 负载:位置3 (索引2),单位1% engine_load = Framedata[2] & 0x7F # 取7位 # 转速:位置4-5 (索引3-4),大端序,单位0.125 RPM raw_rpm = (Framedata[3] << 8) | Framedata[4] rpm = raw_rpm * 0.125 return f’{engine_load}|{rpm}’ elif PGNID == 0xFEC1: # 里程表 (VDHR) # 位置1-4 (索引0-3),大端序,单位0.125米 raw_val = int(Framedata[3] * 0x1000000) + int(Framedata[2] * 0x10000) + int(Framedata[1] * 0x100) + int(Framedata[0]) return raw_val * 0.125 # 转换为米 elif PGNID == 0xFEE5: # 发动机小时数 # 位置1-4 (索引0-3),大端序,单位0.05小时 raw_val = (Framedata[0] << 24) | (Framedata[1] << 16) | (Framedata[2] << 8) | Framedata[3] return raw_val * 0.05 elif PGNID == 0xFEF2: # 平均油耗 # 位置1-2 (索引0-1),大端序,单位0.05 L/h raw_val = (Framedata[0] << 8) | Framedata[1] return raw_val * 0.05 elif PGNID == 0xFEEE: # 冷却液温度 # 位置1 (索引0),单位1°C,偏移-40 return Framedata[0] - 40 elif PGNID == 0xFE56: # 燃油液位 # 位置1 (索引0),单位0.4% return Framedata[0] * 0.4 elif PGNID == 0xF005: # 档位 # 位置4 (索引3),直接返回值 return Framedata[3] return None # def start_reading(self): # self.read_thread = threading.Thread(target=self.Com_read_frame, daemon=True) # self.read_thread.start() 这是这段程序的部分print输出:十六进制数据: ff 十六进制数据: 55 十六进制数据: 1000 十六进制数据: 0c 十六进制数据: 98 十六进制数据: 00 十六进制数据: 01 十六进制数据: 0b 十六进制数据: 00 十六进制数据: 00 十六进制数据: 0c 十六进制数据: fc 十六进制数据: ff 十六进制数据: fa 十六进制数据: fa 十六进制数据: ff 十六进制数据: ff 十六进制数据: ff 十六进制数据: 26 十六进制数据: de 十六进制数据: ff 完整帧数据: ff5510000c9800010b00000cfcfffafaffffff26de 十六进制数据: 5510000c 十六进制数据: 98 十六进制数据: 00010b 十六进制数据: 00000c 十六进制数据: fcff 十六进制数据: fafa 十六进制数据: ff 十六进制数据: ffff 十六进制数据: 37ef 十六进制数据: ff 十六进制数据: 55 十六进制数据: 1000 十六进制数据: 0c 十六进制数据: 98 十六进制数据: 00 十六进制数据: 010b 十六进制数据: 00 十六进制数据: 00 十六进制数据: 0c 十六进制数据: fc 十六进制数据: ff 十六进制数据: fa 十六进制数据: fa 十六进制数据: ff 十六进制数据: ff 十六进制数据: ff30 十六进制数据: e8 十六进制数据: ff 完整帧数据: ff5510000c9800010b00000cfcfffafaffffff30e8 在十六进制数据中,FF 55是帧头可以看到发送了3帧的数据,但是完整帧数据显示只接收了2帧,找到其中的问题并解决
07-22
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值