1021. Deepest Root (25)

1021. Deepest Root (25)

时间限制
1500 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

Output Specification:

For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.

Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
这道题的解法有很多,第一个想到的是用DFS做,但是总确定不好递归调用的节点数,后来选择用BFS求层数;还有一个是内存超限的问题,此问题有N个点,N-1条边,是稀疏图,选择邻接表的表示方法。下面贴两种做法。

方法一:DFS

#include<iostream>  
#include<string.h>  
#include<vector>  
using namespace std;  
#define N 10001  
vector<int> edge[N];  
int deepest[N];  
int visited[N];  
int n;  
int  dfs(int now_node){  
    if(visited[now_node]==1)  
        return 0;  
    visited[now_node]=1;  
    if(edge[now_node].size()==0)  
        return 1;  
    int i,maxdeep=0,tmp;  
    for(i=0;i<edge[now_node].size();i++){//find a deepest from this node  
        if(visited[edge[now_node][i]]==0){  
            tmp=dfs(edge[now_node][i]);  
            maxdeep=maxdeep>tmp?maxdeep:tmp;  
        }  
    }  
    return maxdeep+1;  
}  
int main()  
{  
    int i,j;  
    cin>>n;  
    for(i=1;i<=n-1;i++){  
        int v1,v2;  
        cin>>v1>>v2;  
        edge[v1].push_back(v2);  
        edge[v2].push_back(v1);  
    }  
    memset(deepest,0,sizeof(deepest));  
    int max_deep=0;  
    int flag=0;  
    for(i=1;i<=n;i++){  
        if(0==flag)  
            memset(visited,0,sizeof(visited));  
        deepest[i]=dfs(i);  
        max_deep=max_deep>deepest[i]?max_deep:deepest[i];  
        for(j=i;j<=n;j++){//check if it is a connected graph  
            if(visited[j]==0){  
                flag++;  
                i=j-1;  
                break;  
            }  
        }  
    }  
    if(flag>0){  
        cout<<"Error: "<<flag+1<<" components"<<endl;  
    }  
    else{  
        for(i=1;i<=n;i++){  
            if(deepest[i]==max_deep)  
                cout<<i<<endl;  
        }  
    }  
    return 0;  
}  

方法二:BFS

#include <iostream>
#include <vector>
#include <queue>
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
using namespace std;
const int NUM = 10000+5;
bool visited[NUM]={false};
int level[NUM]={0},level2[NUM]={0};
vector < vector<int> > v(NUM);
int bfs(int root){//进行bfs 
    queue<int> q;
    int now;
    q.push(root);
    visited[root]=true;
    int ceng = 0;
    while(!q.empty()){
        int size = q.size();
        ceng++; 
        for(int j=0;j<size;j++){
            now = q.front();
            q.pop();
            for(int i=0;i<v[now].size();i++){
                int t = v[now][i];
                if(visited[t]==false){
                    visited[t] = true;
                    q.push(t);
                }
            }

        }
    }
    return ceng;
}
int main(int argc, char *argv[]) {
    int n,count=0;
    cin>>n;
    for(int i=0;i<n-1;i++){//构建图的邻接表 
        int x,y;
        cin>>x>>y;
        v[x].push_back(y);
        v[y].push_back(x);
    }
    for(int i=1;i<=n;i++){//找连通分量 
        if(visited[i]==false){
            bfs(i);
            count++;
        }
    }
    int i=1;
    int res[n+1];
    if(count>1){
        cout<<"Error: "<<count<<" components"<<endl;
    }
    else{//求每个节点的层次 
        int MAX = -1;
        for(int k=1;k<=n;k++){
            for(int j=0;j<NUM;j++){
            visited[j]=false;
            }
            int t = bfs(k);
            res[i++]=t;
            if(MAX<t){
                MAX = t;
            }
        }
        for(int j=1;j<=n;j++){//输出最大层次对应的节点编号 
            if(res[j]==MAX){
                cout<<j<<endl;
            }
        }
    }
    return 0;
}

# -*- coding: utf-8 -*- '''请在Begin-End之间补充代码, 完成BinaryTree类''' class BinaryTree: # 创建左右子树为空的根结点 def __init__(self, rootObj): self.key = rootObj # 成员key保存根结点数据项 self.leftChild = None # 成员leftChild初始化为空 self.rightChild = None # 成员rightChild初始化为空 # 把newNode插入到根的左子树 def insertLeft(self, newNode): if self.leftChild is None: self.leftChild = BinaryTree(newNode) # 左子树指向由newNode所生成的BinaryTree else: t = BinaryTree(newNode) # 创建一个BinaryTree类型的新结点t t.leftChild = self.leftChild # 新结点的左子树指向原来根的左子树 self.leftChild = t # 根结点的左子树指向结点t # 把newNode插入到根的右子树 def insertRight(self, newNode): if self.rightChild is None: # 右子树指向由newNode所生成的BinaryTree # ********** Begin ********** # self.rightChild = BinaryTree(newNode) # ********** End ********** # else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t # ********** End ********** # # 取得右子树,返回值是一个BinaryTree类型的对象 def getRightChild(self): # ********** Begin ********** # return self.rightChild # ********** End ********** # # 取得左子树 def getLeftChild(self): # ********** Begin ********** # return self.leftChild # ********** End ********** # # 设置根结点的值 def setRootVal(self, obj): # 将根结点的值赋值为obj # ********** Begin ********** # self.key = obj # ********** End ********** # # 取得根结点的值 def getRootVal(self): # ********** Begin ********** # return self.key # ********** End ********** # # 主程序 input_str = input() nodes = input_str.split(',') # 创建根节点 root = BinaryTree(nodes[0]) # 插入左子树和右子树 if len(nodes) > 1: root.insertLeft(nodes[1]) if len(nodes) > 2: root.insertRight(nodes[2]) # 前三行输出:对创建的二叉树按编号顺序输出结点 print(root.getRootVal()) left_child = root.getLeftChild
最新发布
03-18
### 补全BinaryTree类的方法 以下是基于提供的参考资料[^1][^2],补全 `BinaryTree` 类中缺失的代码实现: #### 方法说明 - **insertRight**: 将新节点插入作为当前节点的右子节点。如果已有右子节点,则将其降级为新节点的右子节点。 - **getRightChild**: 返回当前节点的右子树。 - **setRootVal**: 设置当前节点的值。 - **getRootVal**: 获取当前节点的值。 #### 完整代码实现 ```python class BinaryTree: def __init__(self, root_val): self.key = root_val self.left_child = None self.right_child = None def insert_left(self, new_node): if not isinstance(new_node, BinaryTree): # 确保传入的是BinaryTree对象 new_node = BinaryTree(new_node) if self.left_child is None: self.left_child = new_node else: t = BinaryTree(new_node.get_root_val()) t.left_child = self.left_child self.left_child = t def insert_right(self, new_node): if not isinstance(new_node, BinaryTree): # 确保传入的是BinaryTree对象 new_node = BinaryTree(new_node) if self.right_child is None: self.right_child = new_node else: t = BinaryTree(new_node.get_root_val()) # 创建新的右子节点 t.right_child = self.right_child # 原有的右子树成为新节点的右子树 self.right_child = t # 新节点替换原有右子节点位置 def get_left_child(self): return self.left_child def get_right_child(self): return self.right_child # 返回当前节点的右子树 def set_root_val(self, value): self.key = value # 更新当前节点的值 def get_root_val(self): return self.key # 返回当前节点的值 ``` --- ### 使用示例 以下是一个简单的测试案例,展示如何使用上述方法构建并操作二叉树: ```python # 初始化根节点 tree = BinaryTree('A') # 插入左子节点 tree.insert_left(BinaryTree('B')) # 插入右子节点 tree.insert_right(BinaryTree('C')) # 修改根节点的值 tree.set_root_val('Z') # 输出根节点的值 print(tree.get_root_val()) # 输出 'Z' # 访问右子节点 right_child = tree.get_right_child() if right_child: print(right_child.get_root_val()) # 输出 'C' else: print("No Right Child") # 继续向右子节点添加子节点 right_child.insert_right(BinaryTree('D')) deepest_right = right_child.get_right_child() if deepest_right: print(deepest_right.get_root_val()) # 输出 'D' else: print("No Deeper Right Child") ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值