关于Spark里面的RDD.mappartitions的问题

本文探讨了Spark中mappartitions与foreachpartitions的区别,重点解释了mappartitions的执行机制及其如何利用懒加载特性来提高执行效率。
mappartitions的执行效率要比foreachpartitions高,但是对一个同样的RDD,mappartitions里面的call方法为什么不执行呢?这是懒加载的原因,只有在使用mappartitions的结果的时候,它才会真正去调用call方法执行,比如rdd.mappartitions.collect或者rdd.mappartitions.count
Caused by: java.lang.IndexOutOfBoundsException: 100 at scala.collection.mutable.ResizableArray$class.apply(ResizableArray.scala:43) ~[scala-library-2.11.8.jar:?] at scala.collection.mutable.ArrayBuffer.apply(ArrayBuffer.scala:48) ~[scala-library-2.11.8.jar:?] at com.bmsoft.operate.VsZConductorOverlimiteventPeriod$$anonfun$3$$anonfun$apply$6$$anonfun$apply$9.apply(VsZConductorOverlimiteventPeriod.scala:389) ~[_55816ee26fbdccb93561c3f306af0e74.jar:?] at com.bmsoft.operate.VsZConductorOverlimiteventPeriod$$anonfun$3$$anonfun$apply$6$$anonfun$apply$9.apply(VsZConductorOverlimiteventPeriod.scala:310) ~[_55816ee26fbdccb93561c3f306af0e74.jar:?] at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) ~[scala-library-2.11.8.jar:?] at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) ~[scala-library-2.11.8.jar:?] at com.bmsoft.operate.VsZConductorOverlimiteventPeriod$$anonfun$3$$anonfun$apply$6.apply(VsZConductorOverlimiteventPeriod.scala:310) ~[_55816ee26fbdccb93561c3f306af0e74.jar:?] at com.bmsoft.operate.VsZConductorOverlimiteventPeriod$$anonfun$3$$anonfun$apply$6.apply(VsZConductorOverlimiteventPeriod.scala:266) ~[_55816ee26fbdccb93561c3f306af0e74.jar:?] at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434) ~[scala-library-2.11.8.jar:?] at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440) ~[scala-library-2.11.8.jar:?] at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408) ~[scala-library-2.11.8.jar:?] at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source) ~[?:?] at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:216) ~[spark-catalyst_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:279) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$$anonfun$2.apply(ShuffleExchangeExec.scala:250) ~[spark-sql_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.rdd.RDD.iterator(RDD.scala:288) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.rdd.RDD.iterator(RDD.scala:288) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.scheduler.Task.run(Task.scala:109) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345) ~[spark-core_2.11-2.3.0-odps0.30.0.jar:?] at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) ~[?:1.8.0_65-AliJVM] at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) ~[?:1.8.0_65-AliJVM] at java.lang.Thread.run(Thread.java:745) ~[?:1.8.0_65-AliJVM]
最新发布
08-27
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值