[LeetCode]3 Longest Substring Without Repeating Characters

本文介绍了一种高效算法来寻找字符串中最长的无重复字符子串,通过使用哈希表或数组跟踪字符位置,实现了O(n)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a string, find the length of the longest substring without repeating characters.

Examples:

Given "abcabcbb", the answer is "abc", which the length is 3.

Given "bbbbb", the answer is "b", with the length of 1.

Given "pwwkew", the answer is "wke", with the length of 3. Note that the answer must be a substring"pwke" is a subsequence and not a substring.

/**
 * Solution (DP, O(n)):
 * 
 * Assume L[i] = s[m...i], denotes the longest substring without repeating
 * characters that ends up at s[i], and we keep a hashmap for every
 * characters between m ... i, while storing <character, index> in the
 * hashmap.
 * We know that each character will appear only once.
 * Then to find s[i+1]:
 * 1) if s[i+1] does not appear in hashmap
 *    we can just add s[i+1] to hash map. and L[i+1] = s[m...i+1]
 * 2) if s[i+1] exists in hashmap, and the hashmap value (the index) is k
 *    let m = max(m, k), then L[i+1] = s[m...i+1], we also need to update
 *    entry in hashmap to mark the latest occurency of s[i+1].
 * 
 * Since we scan the string for only once, and the 'm' will also move from
 * beginning to end for at most once. Overall complexity is O(n).
 *
 * If characters are all in ASCII, we could use array to mimic hashmap.
 */

int lengthOfLongestSubstring(string s) {
    // for ASCII char sequence, use this as a hashmap
    vector<int> charIndex(256, -1);
    int longest = 0, m = 0;

    for (int i = 0; i < s.length(); i++) {
        m = max(charIndex[s[i]] + 1, m);    // automatically takes care of -1 case
        charIndex[s[i]] = i;
        longest = max(longest, i - m + 1);
    }

    return longest;
}

the basic idea is, keep a hashmap which stores the characters in string as keys and their positions as values, and keep two pointers which define the max substring. move the right pointer to scan through the string , and meanwhile update the hashmap. If the character is already in the hashmap, then move the left pointer to the right of the same character last found. Note that the two pointers can only move forward.

   public int lengthOfLongestSubstring(String s) {
        if (s.length()==0) return 0;
        HashMap<Character, Integer> map = new HashMap<Character, Integer>();
        int max=0;
        for (int i=0, j=0; i<s.length(); ++i){
            if (map.containsKey(s.charAt(i))){
                j = Math.max(j,map.get(s.charAt(i))+1);
            }
            map.put(s.charAt(i),i);
            max = Math.max(max,i-j+1);
        }
        return max;
    }

The idea is use a hash set to track the longest substring without repeating characters so far, use a fast pointer j to see if character j is in the hash set or not, if not, great, add it to the hash set, move j forward and update the max length, otherwise, delete from the head by using a slow pointer i until we can put character j to the hash set.

public int lengthOfLongestSubstring(String s) {
    int i = 0, j = 0, max = 0;
    Set<Character> set = new HashSet<>();
    
    while (j < s.length()) {
        if (!set.contains(s.charAt(j))) {
            set.add(s.charAt(j++));
            max = Math.max(max, set.size());
        } else {
            set.remove(s.charAt(i++));
        }
    }
    
    return max;
}

int lengthOfLongestSubstring(string s) {
        vector<int> dict(256, -1);
        int maxLen = 0, start = -1;
        for (int i = 0; i != s.length(); i++) {
            if (dict[s[i]] > start)
                start = dict[s[i]];
            dict[s[i]] = i;
            maxLen = max(maxLen, i - start);
        }
        return maxLen;
    }
C版本解法:

int lengthOfLongestSubstring(char* s) {
    int dict[255];
    memset(dict, -1, 255*sizeof(int));
    int maxLen = 0, start = -1;
    for(int i = 0; i< strlen(s); i++) {
        if(dict[s[i]] > start)
            start = dict[s[i]];
        dict[s[i]] = i;
        maxLen = (maxLen > i - start ? maxLen: i - start);
    }
    return maxLen;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值