先验概率 后验概率

本文深入解析了贝叶斯公式的四大核心概念:后验概率、条件概率、先验概率及全概率公式。详细解释了如何利用这些概念进行概率推断,特别强调了后验概率作为求解目标的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贝叶斯公式:

P(y|x) = ( P(x|y) * P(y) ) / P(x)

这里:

P(y|x) 是后验概率,一般是我们求解的目标。

P(x|y) 是条件概率,又叫似然概率,一般是通过历史数据统计得到。一般不把它叫做先验概率,但从定义上也符合先验定义。

P(y) 是先验概率,一般都是人主观给出的。贝叶斯中的先验概率一般特指它。

P(x) 其实也是先验概率,只是在贝叶斯的很多应用中不重要(因为只要最大后验不求绝对值),需要时往往用全概率公式计算得到。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值