Hadoop MapReduce入门程序

Hadoop MapReduce入门程序

1.数据准备

1363157985066 	13726230503	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com		24	27	2481	24681	200
1363157995052 	13826544101	5C-0E-8B-C7-F1-E0:CMCC	120.197.40.4			4	0	264	0	200
1363157991076 	13926435656	20-10-7A-28-CC-0A:CMCC	120.196.100.99			2	4	132	1512	200
1363154400022 	13926251106	5C-0E-8B-8B-B1-50:CMCC	120.197.40.4			4	0	240	0	200
1363157993044 	18211575961	94-71-AC-CD-E6-18:CMCC-EASY	120.196.100.99	iface.qiyi.com	视频网站	15	12	1527	2106	200
1363157995074 	84138413	5C-0E-8B-8C-E8-20:7DaysInn	120.197.40.4	122.72.52.12		20	16	4116	1432	200
1363157993055 	13560439658	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			18	15	1116	954	200
1363157995033 	15920133257	5C-0E-8B-C7-BA-20:CMCC	120.197.40.4	sug.so.360.cn	信息安全	20	20	3156	2936	200
1363157983019 	13719199419	68-A1-B7-03-07-B1:CMCC-EASY	120.196.100.82			4	0	240	0	200
1363157984041 	13660577991	5C-0E-8B-92-5C-20:CMCC-EASY	120.197.40.4	s19.cnzz.com	站点统计	24	9	6960	690	200
1363157973098 	15013685858	5C-0E-8B-C7-F7-90:CMCC	120.197.40.4	rank.ie.sogou.com	搜索引擎	28	27	3659	3538	200
1363157986029 	15989002119	E8-99-C4-4E-93-E0:CMCC-EASY	120.196.100.99	www.umeng.com	站点统计	3	3	1938	180	200
1363157992093 	13560439658	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			15	9	918	4938	200
1363157986041 	13480253104	5C-0E-8B-C7-FC-80:CMCC-EASY	120.197.40.4			3	3	180	180	200
1363157984040 	13602846565	5C-0E-8B-8B-B6-00:CMCC	120.197.40.4	2052.flash2-http.qq.com	综合门户	15	12	1938	2910	200
1363157995093 	13922314466	00-FD-07-A2-EC-BA:CMCC	120.196.100.82	img.qfc.cn		12	12	3008	3720	200
1363157982040 	13502468823	5C-0A-5B-6A-0B-D4:CMCC-EASY	120.196.100.99	y0.ifengimg.com	综合门户	57	102	7335	110349	200
1363157986072 	18320173382	84-25-DB-4F-10-1A:CMCC-EASY	120.196.100.99	input.shouji.sogou.com	搜索引擎	21	18	9531	2412	200
1363157990043 	13925057413	00-1F-64-E1-E6-9A:CMCC	120.196.100.55	t3.baidu.com	搜索引擎	69	63	11058	48243	200
1363157988072 	13760778710	00-FD-07-A4-7B-08:CMCC	120.196.100.82			2	2	120	120	200
1363157985066 	13726238888	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com		24	27	2481	24681	200
1363157993055 	13560436666	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			18	15	1116	954	200
1363157993055 	13560436666	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			18	15	111s6	954	200
1363157993055
1363157985066 	13726238888	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com		24	27	2481	24681	200

2.环境准备

  1. Idea,使用eclipse也是可以的
    在这里插入图片描述
  2. 创建maven工程
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3. 设置maven相关配置
在这里插入图片描述
在这里插入图片描述
注意
–这里的maven home directory就是你自己的maven安装目录路径
–user settings file就是你自己针对maven的配置文件所在。这个文件中一般配置2个信息,一个是本地maven仓库路径,一个是国内maven仓库镜像地址.我自己的文件中2个修改之处如下,大家可以参考。

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/settings-1.0.0.xsd">
		  <localRepository>D:\develop\maven_repository\repository</localRepository>
		  
<mirror>
        <id>alimaven</id>
        <mirrorOf>central</mirrorOf>
        <name>aliyun maven</name>
        <url>http://maven.aliyun.com/nexus/content/repositories/central/</url>
    </mirror>

–local repository 就是本地maven仓库的路径
ps:
从规范性来看,最好新建一个目录,把这个settings.xml文件和本地maven仓库都放在这个目录下,这样更方便进行配置
4. 拷贝以下文件,粘贴到新建的pom文件中

<build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>8</source>
                    <target>8</target>
                </configuration>
            </plugin>
        </plugins>
    </build>

    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.2.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>3.2.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-core</artifactId>
            <version>3.2.1</version>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-common</artifactId>
            <version>3.2.1</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/com.alibaba/fastjson -->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.68</version>
        </dependency>

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-mapreduce-client-jobclient</artifactId>
            <version>3.2.1</version>
        </dependency>
    </dependencies>

5.点击加载maven的第三方库按钮,耐心等待maven下载jar包结束

3.开始写java 代码

三个类,一个Driver,就是含有main方法的驱动类,一个Mapper类,一个Reeducer类。

很简单的代码

  1. map阶段,就是把一个输入的文件,逐行读取出来,然后使用空格进行分割,取电话号码为key,倒数第3和第2个字段相加的数作为value
  2. reduce阶段就是把map阶段输出的key和value进行聚合,就是把每个key对应所有的value进行累加,然后输出到本地文件夹中

3.1 Mapper类代码

import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author hulc
 * @slogan: just do it
 * @date 2020/8/19 13:01
 */

public class PhoneMapper extends Mapper<LongWritable, Text, Text, DoubleWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();

        String[] split = line.split("\\s+");

        try {
            // 电话号码  上下行流量
            String phoneStr = split[1];

            String upStr = split[split.length - 1- 2];
            String downStr = split[split.length -1 -1];
            double up = Double.parseDouble(upStr);
            double down = Double.parseDouble(downStr);

            context.write(new Text(phoneStr), new DoubleWritable(up+down));
        }catch(Exception e) {
            e.printStackTrace();
        }
    }
}

3.2 Reducer 类代码

import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author hulc
 * @slogan: just do it
 * @date 2020/8/19 13:01
 */

public class PhoneReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {
    @Override
    protected void reduce(Text key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
        double sum = 0;

        for (DoubleWritable value : values) {
            sum += value.get();
        }

        context.write(key, new DoubleWritable(sum));
    }
}

3.3 Driver驱动类代码

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author hulc
 * @slogan: just do it
 * @date 2020/8/19 13:01
 */

public class PhoneDriver {

    public static void main(String[] args) {
        // 配置
        Configuration entries = new Configuration();

        // job
        try {
            Job niwa = Job.getInstance(entries, "niwa");

            // 设置mapper reducer 的class
            niwa.setMapperClass(PhoneMapper.class);
            niwa.setReducerClass(PhoneReducer.class);

            // 设置mapper和reduce输出的key value
            niwa.setMapOutputKeyClass(Text.class);
            niwa.setMapOutputValueClass(DoubleWritable.class);

            niwa.setOutputKeyClass(Text.class);
            niwa.setOutputValueClass(DoubleWritable.class);

            // 设置输入数据,输出数据
            FileInputFormat.setInputPaths(niwa, new Path("E:\\DOITLearning\\8.Hadoop\\mrdata\\flow\\input\\flow.log"));
            FileOutputFormat.setOutputPath(niwa, new Path("E:\\DOITLearning\\8.Hadoop\\mrdata\\flow\\output_hulc01"));

            // 设置reduce任务数
            niwa.setNumReduceTasks(1);

            // 启动任务
            boolean b = niwa.waitForCompletion(true);

            if(b){
                System.out.println("ok le");
            } else {
                System.out.println(" failed");
            }

        } catch (IOException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        }
    }
}

温故知新,学而时习之。还是要时常复习,不用就容易忘记,敲代码的手感很重要。
不要懈怠,不要懈怠。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值