堆和栈的区别

在计算机领域,堆栈是一个不容忽视的概念,我们编写的C语言程序基本上都要用到。但对于很多的初学着来说,堆栈是一个很模糊的概念。堆栈:一种数据结构、一个在程序运行时用于存放的地方,这可能是很多初学者的认识,因为我曾经就是这么想的和汇编语言中的堆栈一词混为一谈。我身边的一些编程的朋友以及在网上看帖遇到的朋友中有好多也说不清堆栈,所以我想有必要给大家分享一下我对堆栈的看法,有说的不对的地方请朋友们不吝赐教,这对于大家学习会有很大帮助。

 

    首先在数据结构上要知道堆栈,尽管我们这么称呼它,但实际上堆栈是两种数据结构:堆和栈。

 

    堆和栈都是一种数据项按序排列的数据结构。

 

    我们先从大家比较熟悉的栈说起吧,它是一种具有后进先出性质的数据结构,也就是说后存放的先取,先存放的后取。这就如同我们要取出放在箱子里面底下的东西(放入的比较早的物体),我们首先要移开压在它上面的物体(放入的比较晚的物体)。而堆就不同了,堆是一种经过排序的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。由于堆的这个特性,常用来实现优先队列,堆的存取是随意,这就如同我们在图书馆的书架上取书,虽然书的摆放是有顺序的,但是我们想取任意一本时不必像栈一样,先取出前面所有的书,书架这种机制不同于箱子,我们可以直接取出我们想要的书。

 

    然而我要说的重点并不在这,我要说的堆和栈并不是数据结构的堆和栈,之所以要说数据结构的堆和栈是为了和后面我要说的堆区和栈区区别开来,请大家一定要注意。

 

    下面就说说C语言程序内存分配中的堆和栈,这里有必要把内存分配也提一下,大家不要嫌我啰嗦,一般情况下程序存放在Rom或Flash中,运行时需要拷到内存中执行,内存会分别存储不同的信息,如下图所示:

 

C语言程序内存分配中的堆和栈

 

    内存中的栈区处于相对较高的地址以地址的增长方向为上的话,栈地址是向下增长的,栈中分配局部变量空间,堆区是向上增长的用于分配程序员申请的内存空间。另外还有静态区是分配静态变量,全局变量空间的;只读区是分配常量和程序代码空间的;以及其他一些分区。

 

来看一个网上很流行的经典例子:

 

main.cpp
  int a = 0; 全局初始化区
  char *p1; 全局未初始化区
  main()
  {
  int b; 栈
  char s[] = "abc"; 栈
  char *p2; 栈
  char *p3 = "123456"; 123456/0在常量区,p3在栈上。
  static int c =0; 全局(静态)初始化区
  p1 = (char *)malloc(10);  堆
  p2 = (char *)malloc(20);  堆
  }


  
    不知道你是否有点明白了,堆和栈的第一个区别就是申请方式不同:栈(英文名称是stack)是系统自动分配空间的,例如我们定义一个 char a;系统会自动在栈上为其开辟空间。而堆(英文名称是heap)则是程序员根据需要自己申请的空间,例如malloc(10);开辟十个字节的空间。由于栈上的空间是自动分配自动回收的,所以栈上的数据的生存周期只是在函数的运行过程中,运行后就释放掉,不可以再访问。而堆上的数据只要程序员不释放空间,就一直可以访问到,不过缺点是一旦忘记释放会造成内存泄露。还有其他的一些区别我认为网上的朋友总结的不错这里转述一下:

 

 

 

1.申请后系统的响应

 

:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。

 

:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆。


    结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的 delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
    
    也就是说堆会在申请后还要做一些后续的工作这就会引出申请效率的问题。

 

 

 

2.申请效率的比较

 

:由系统自动分配,速度较快。但程序员是无法控制的。

 

:是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。

 

3.申请大小的限制
  
:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
  
:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。


  
4.堆和栈中的存储内容
  
: 在函数调用时,第一个进栈的是主函数中函数调用后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
  
    当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
  
:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

 

 

5.存取效率的比较
  
  char s1[] = "aaaaaaaaaaaaaaa";
  char *s2 = "bbbbbbbbbbbbbbbbb";
  aaaaaaaaaaa是在运行时刻赋值的;
  而bbbbbbbbbbb是在编译时就确定的;
  但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
  比如:
  #include
  void main()
  {
  char a = 1;
  char c[] = "1234567890";
  char *p ="1234567890";
  a = c[1];
  a = p[1];
  return;
  }
  对应的汇编代码
  10: a = c[1];
  00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
  0040106A 88 4D FC mov byte ptr [ebp-4],cl
  11: a = p[1];
  0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
  00401070 8A 42 01 mov al,byte ptr [edx+1]
  00401073 88 45 FC mov byte ptr [ebp-4],al

 

 

堆和栈的区别可以引用一位前辈的比喻来看出:
  
    使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
  
    使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。比喻很形象,说的很通俗易懂,不知道你是否有点收获。

 

参考网址:http://www.top-e.org/jiaoshi/html/427.html

 

<think>我们正在讨论C++中区别。根据之前的引用内容,我们可以从多个维度来区分这两者。以下是一个结构清晰的回答: ### C++中区别 在C++中,(Heap)(Stack)是程序运行时内存的两个重要区域,它们在以下方面有显著区别: 1. **分配方式** - ****:由编译器自动分配释放。当函数被调用时,其局部变量(包括固定大小的数组)在上分配;函数返回时,这些内存自动释放。 - ****:由程序员手动分配(使用`new`或`malloc`)释放(使用`delete`或`free`)。如果不释放,会导致内存泄漏。 2. **生命周期** - ****:变量的生命周期与函数调用周期一致。函数结束,变量自动销毁。 - ****:分配的内存块生命周期由程序员控制,直到显式释放或程序结束。 3. **大小限制** - ****:大小有限(通常几MB),超出会导致溢出(Stack Overflow)错误。 - ****:大小受系统可用内存限制,可分配更大内存块。 4. **访问速度** - ****:访问速度快,因为内存分配是连续的(通过指针移动)[^1]。 - ****:访问速度相对慢,因为内存分配是动态的,且可能产生内存碎片。 5. **存储内容** - ****:存储局部变量、函数参数、返回地址等。 - ****:存储动态分配的对象(如使用`new`创建的对象或大数组)。 6. **内存管理开销** - ****:无额外开销,分配/释放仅需移动指针。 - ****:分配/释放需搜索可用内存块,可能引发碎片问题,开销较大[^2]。 ### 代码示例对比 ```cpp #include <iostream> int main() { // 上分配数组 (自动管理) int stack_arr[100]; // 存储上 // 上分配数组 (手动管理) int* heap_arr = new int[1000]; // 存储上 // 使用后必须释放内存 delete[] heap_arr; } ``` > ⚠️ 注意:空间有限,若定义超大数组(如`int arr[1000000]`)可能导致溢出,此时应使用分配。 ### 总结对比表 | 特性 | (Stack) | (Heap) | |--------------|-----------------------------|-------------------------------| | **分配方式** | 编译器自动分配/释放 | 程序员手动分配/释放 | | **生命周期** | 随函数结束自动销毁 | 直到显式释放或程序结束 | | **大小限制** | 较小(通常几MB) | 仅受系统内存限制 | | **访问速度** | 快(连续内存) | 慢(需寻址) | | **碎片问题** | 无 | 可能产生内存碎片 | | **适用场景** | 小型临时数据、局部变量 | 大型数据、动态大小对象 | ### 选择建议 - 优先使用****:数据量小、生命周期短时(如函数内部临时变量)。 - 必须使用****:数据量大(如大数组)、需跨函数存在或大小在运行时确定时。 --- §§相关问题§§ 1. 为什么C++中动态内存分配更容易导致内存泄漏? 2. 如何检测避免溢出问题? 3. C++11的智能指针如何简化内存管理? 4. 的内存地址范围有何典型特征? [^1]: 分配通过移动指针实现,地址连续且无需系统调用 [^2]: 分配需维护空闲内存链表,分配释放可能引发碎片化问题 </think>### C++中区别详解 在C++中,(Heap)(Stack)是两种核心的内存管理机制,它们在内存分配、生命周期管理性能特性上有本质区别: #### 1. **内存分配方式** 💻 | | (Stack) | (Heap) | |----------|--------------------------------|--------------------------------| | **机制** | 💾 编译器自动分配/释放 | ⚙️ 程序员手动分配(`new`/`malloc`) | | **速度** | 极快(仅移动指针)[^1] | 🐢 较慢(需搜索可用内存块) | | **示例** | `int arr[10];` | `int* arr = new int[10];` | #### 2. **生命周期管理** ⏳ | | | | |----------|--------------------------------|--------------------------------| | **释放** | 🔄 函数结束**自动销毁** | 🧩 需手动释放(`delete`/`free`) | | **风险** | ❌ 溢出(大数组崩溃)[^2] | ❗ 内存泄漏(未释放则永久占用) | #### 3. **存储内容与限制** 📦 | | | | |----------|--------------------------------|--------------------------------| | **存储** | 📌 局部变量/函数参数/返回地址 | 📦 动态分配对象/大型数据结构 | | **大小** | 🔒 固定(通常 ≤ 8MB) | 🌐 仅受系统内存限制 | #### 4. **访问效率对比** ⚡ 的访问更快,因为: - 内存地址连续(CPU缓存友好) - 通过寄存器直接寻址 - 无碎片化问题 访问需额外寻址,可能触发缺页中断[^3]。 #### 5. **典型场景对比表** 🔍 | 场景 | 适用性 | 适用性 | |---------------------|------------------|-------------------| | 小型临时数组 | ✅ 优先使用 | ❌ 不必要 | | 10万元素以上大数组 | ❌ 导致溢出 | ✅ 必须使用 | | 跨函数传递数据 | ❌ 生命周期短 | ✅ 持久存在 | | 实时高性能系统 | ✅ 低延迟优势 | ❗ 谨慎使用 | #### 6. **代码示例验证** 🔬 ```cpp #include <iostream> int global[5]; // 全局变量→静态存储区 int main() { int stack_arr[3]; // 存储 int* heap_arr = new int[3]; // 存储 // 地址对比(Linux x64典型输出) std::cout << "地址: " << &stack_arr[0] << "\n"; // 0x7ffd... std::cout << "地址: " << heap_arr << "\n"; // 0x55a1... std::cout << "全局地址: " << global << "\n"; // 0x55a1... delete[] heap_arr; // 必须手动释放! } ``` > 💡 **输出说明**: > - 地址高位(如`0x7ffd...`) > - /全局地址低位(如`0x55a1...`) > - 未释放`heap_arr`将导致内存泄漏! --- ### 关键结论 ✅ 1. ****:自动管理、速度快、容量小,适合**小型临时数据** 2. ****:手动控制、速度慢、容量大,适合**大型/动态数据** 3. **黄金法则**: $$ \text{数据量} > 100KB \quad \Rightarrow \quad \text{必须用} $$ ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值