机器学习实战-决策树代码&注释

#使用ID3算法
from math import log
import operator

#计算信息增益,熵,确定最优的划分特征 H = -Σp(xi)log2p(xi)
#信息熵代表着混乱程度,熵越高信息越混乱,需要快速降低熵值
def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts:
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt

def createDataSet():
    dataSet =[[1,1,'yes'],
              [1,1,'yes'],
              [1, 0, 'no'],
              [0, 1, 'no'],
              [0,1,'no']
              ]
    labels = ['no surfacing','flippers']
    return dataSet, labels

#按照给定的特征划分数据集
def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

#选择最优的特征进行数据集划分
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1
    #数据集的熵
    baseEntropy = calcShannonEnt(dataSet)
    #信息增益,取最大
    bestInfoGain = 0.0
    #对应的最优特征
    bestFeature = -1
    for i in range(numFeatures):
        #每种特征对应的值,每一列对应的值
        featList = [example[i] for example in dataSet]
        #set集合去重
        uniqueVals = set(featList)
        #以第i个特征进行划分,对应不同的值都会得到一个划分的结果
        for uniqueVal in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, uniqueVal)
            prob = len(subDataSet) / float(len(dataSet))
            newEntropy = calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        if(infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature, bestInfoGain

#递归构建决策树  终止条件:属性被用完,划分后所有数据属于同一类别

#投票,最后节点的类别为最多数据的类别
def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys() :classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

#创建树
def createTree(dataSet, labels):
    classList =[example[-1] for example in dataSet]
    #只有一类
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataSet[0]) == 1:
        #没有用于划分的特征了
        return majorityCnt(classList)
    bestFeature, bestInfoGain = chooseBestFeatureToSplit(dataSet)
    bestLabel = labels[bestFeature]
    #字典进行嵌套
    myTree = {bestLabel:{}}
    del(labels[bestFeature])
    featValues = [example[bestFeature] for example in dataSet]
    uniqueVals = set(featValues)
    for uniqueVal in uniqueVals:
        subLabel = labels[:]
        #递归
        myTree[bestLabel][uniqueVal] = createTree(splitDataSet(dataSet, bestFeature, uniqueVal), subLabel)
    return myTree


if __name__ == "__main__":
    dataSet, labels = createDataSet()
    # tesda = [1,2,3,4,5,6,7,8,9]
    # redu = tesda[:2]
    # print(redu)
    # asx =tesda[3:]
    # print(asx)
    #
    # resdata1 = splitDataSet(dataSet, 0, 1)
    # print(resdata1)
    # resdata2 = splitDataSet(dataSet, 0, 0)
    # print(resdata2)
    # #ent = calcShannonEnt(dataSet)
    # #print(ent)
    # print("=============")
    #
    # bestFeature, bestInfoGain = chooseBestFeatureToSplit(dataSet)
    # print(bestFeature, bestInfoGain)
    mytree = createTree(dataSet, labels)
    print(mytree)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值