数据结构和算法--堆的基本存储

堆的基本存储

一、概念及其介绍

堆(Heap)是计算机科学中一类特殊的数据结构的统称。

堆通常是一个可以被看做一棵完全二叉树的数组对象。

堆满足下列性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值。
  • 堆总是一棵完全二叉树。

二、适用说明

堆是利用完全二叉树的结构来维护一组数据,然后进行相关操作,一般的操作进行一次的时间复杂度在 O(1)~O(logn) 之间,堆通常用于动态分配和释放程序所使用的对象。

若为优先队列的使用场景,普通数组或者顺序数组,最差情况为 O(n^2),堆这种数据结构也可以提高入队和出队的效率。

入队 出队
普通数组 O(1) O(n)
顺序数组 O(n) O(1)
O(logn) O(log)

三、结构图示

二叉堆是一颗完全二叉树,且堆中某个节点的值总是不大于其父节点的值,该完全二叉树的深度为 k,除第 k 层外,其它各层 (1~k-1) 的结点数都达到最大个数,第k 层所有的结点都连续集中在最左边。

其中堆的根节点最大称为最大堆,如下图所示:

我们可以使用数组存储二叉堆,右边的标号是数组的索引。

假设当前元素的索引位置为 i,可以得到规律:

parent(i) = i/2(取整)
left child(i) = 2*i
right child(i) = 2*i +1

四、Java 实例代码

源码包下载:Download

src/runoob/heap/MaxHeap.java 文件代码:

package runoob.heap;

/**
 * 堆定义
 */
public class MaxHeap<T> {
    private T[] data;
    private int count;
    // 构造函数, 构造一个空堆, 可容纳capacity个元素
    public MaxHeap(int capacity){
        data = (T[])new Object[capacity+1];
        count = 0;
    }
    // 返回堆中的元素个数
    public int size(){
        return count;
    }
    // 返回一个布尔值, 表示堆中是否为空
    public boolean isEmpty(){
        return count == 0;
    }
    // 测试 MaxHeap
    public static void main(String[] args) {
        MaxHeap<Integer> maxHeap = new MaxHeap<Integer>(100);
        System.out.println(maxHeap.size());
    }
}

堆的 shift up

本小节介绍如何向一个最大堆中添加元素,称为 shift up

假设我们对下面的最大堆新加入一个元素52,放在数组的最后一位,52大于父节点16,此时不满足堆的定义,需要进行调整。

首先交换索引为 5 和 11 数组中数值的位置,也就是 52 和 16 交换位置。

此时 52 依然比父节点索引为 2 的数值 41 大,我们还需要进一步挪位置。

这时比较 52 和 62 的大小,52 已经比父节点小了,不需要再上升了,满足最大堆的定义。我们称这个过程为最大堆的 shift up。

Java 实例代码

源码包下载:Download

src/runoob/heap/HeapShiftUp.java 文件代码:

package runoob.heap;

/**
 * 往堆中添加一元素
 */
public class HeapShiftUp<T extends Comparable> {

    protected T[] data;
    protected int count;
    protected int capacity;

    // 构造函数, 构造一个空堆, 可容纳capacity个元素
    public HeapShiftUp(int capacity){
        data = (T[])new Comparable[capacity+1];
        count = 0;
        this.capacity = capacity;
    }
    // 返回堆中的元素个数
    public int size(){
        return count;
    }

    // 返回一个布尔值, 表示堆中是否为空
    public boolean isEmpty(){
        return count == 0;
    }
    // 像最大堆中插入一个新的元素 item
    public void insert(T item){
        assert count + 1 <= capacity;
        data[count+1] = item;
        count ++;
        shiftUp(count);
    }
    // 交换堆中索引为i和j的两个元素
    private void swap(int i, int j){
        T t = data[i];
        data[i] = data[j];
        data[j] = t;
    }

    //********************
    //* 最大堆核心辅助函数
    //********************
    private void shiftUp(int k){

        while( k > 1 && data[k/2].compareTo(data[k]) < 0 ){
            swap(k, k/2);
            k /= 2;
        }
    }

    // 测试 HeapShiftUp
    public static void main(String[] args) {
        HeapShiftUp<Integer> heapShiftUp = new HeapShiftUp<Integer>(100);
        int N = 50; // 堆中元素个数
        int M = 100; // 堆中元素取值范围[0, M)
        for( int i = 0 ; i < N ; i ++ )
            heapShiftUp.insert( new Integer((int)(Math.random() * M)) );
        System.out.println(heapShiftUp.size());

    }
}

堆的 shift down

本小节将介绍如何从一个最大堆中取出一个元素,称为 shift down,只能取出最大优先级的元素,也就是根节点,把原来的 62 取出后,下面介绍如何填补这个最大堆。

第一步,我们将数组最后一位数组放到根节点,此时不满足最大堆的定义。

调整的过程是将这个根节点 16 一步一步向下挪,16 比子节点都小,先比较子节点 52 和 30 哪个大,和大的交换位置。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奋进学堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值