推论1: 方程ax≡b(mod n)对于未知量x有解,当且仅当gcd(a,n) | b (b能被gcd(a,b)整除)。
即:若gcd(a,n)|b ==> 有一个解x,使得ax≡b(mod n).
推论2:方程ax≡b(mod n)或者对模n有d个不同的解(有解当且仅当d | b),其中d=gcd(a,n),或者无解。
定理1:设d=gcd(a,n),假定对整数x'和y'满足d=ax'+by'(比如用扩展Euclid算法求出的一组解)。如果d | b,则该方程对模n有d个不同的解,方程ax≡b(mod n)有一个解x0满足x0=x'*(b/d) mod n 通解为xi = x0 + i*(n / d)(d = 0, 1, 2, ..., d - 1)。特别的设e=x0+n,方程ax≡b(mod n)的最小整数解x1=e mod (n/d),最大整数解x2=x1+(d-1)*(n/d)。
定理2:假设方程ax=b(mod n)有解,且x0是方程的任意一个解,则该方程对模n恰有d个不同的解(d=gcd(a,n)),分别为:xi=x0+i*(n/d) mod n 。
类似地: 可以求ax + by = c的整数解(x, y)。==> ax ≡ c(mod b), d = gcd(a, b) | c 时有解。有一个解x0 = x’* (c / d) mod b, y0 = (-a * x0 - c) / b; 通解xi = x0 + i * (b / d), yi = y0 - i * (a / d) (i = 0, 1, 2, ..., d - 1)。
附:扩展欧几里得代码
int exgcd(int a, int b, int& x, int& y)
{
if(b == 0)
{
x = 1;
y = 0;
return a;
}
int r = exgcd(b, a%b, x, y);
int t = x;
x = y;
y = t - a/b* y;
return r;
}
本文详细介绍了同余方程的解法及其与扩展欧几里得算法之间的联系,包括推论、定理以及求解方法,并提供了实际应用案例。
1224

被折叠的 条评论
为什么被折叠?



