卷积神经网络CNN_综述一

本文回顾了深度学习中卷积神经网络(CNN)的发展,从LeNet5开始,介绍了AlexNet、GoogLeNet(Inception V1)、VGG等重要架构。每个架构的关键特点和贡献被详细阐述,如AlexNet的ReLU激活函数、VGG的小卷积核策略以及GoogLeNet的Bottleneck层。这些进展推动了CNN在图像识别领域的精度和效率提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CNN卷积神经网络架构综述

深度学习算法最近变得越来越流行和越来越有用的算法,然而深度学习或者深度神经网络的成功得益于层出不穷的神经网络模型架构。这篇文章当中作者回顾了从1998年开始,近18年来深度神经网络的架构发展情况。


图中的坐标轴我们可以看出横坐标是操作的复杂度,纵坐标是精度。模型设计一开始的时候模型权重越多模型越大,其精度越高,后来出现了resNet、GoogleNet、Inception等网络架构之后,在取得相同或者更高精度之下,其权重参数不断下降。值得注意的是,并不是意味着横坐标越往右,它的运算时间越大。在这里并没有对时间进行统计,而是对模型参数和网络的精度进行了纵横对比。

其中有几个网络作者觉得是必学非常值得学习和经典的:AlexNet、LeNet、GoogLeNet、VGG-16、NiN。

如果你想了解更多关于深度神经网络的架构及其对应的应用,不妨看一下这篇综述 An Analysis of Deep Neural Network Models for Practical Applications


网络架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiangyong58

喝杯茶还能肝到天亮,共同进步

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值