1. ARM Neon Intrinsics 编程
1.入门:基本能上手写Intrinsics
1.1 Neon介绍、简明案例与编程惯例
1.2 如何检索Intrinsics
1.3 优化效果案例
1.4 如何在Android应用Neon
2. 进阶:注意细节处理,学习常用算子的实现
2.1 与Neon相关的ARM体系结构
2.2 对非整数倍元素个数(leftovers)的处理技巧
2.3 算子源码学习(ncnn库,AI方向)
2.4 算子源码学习(Nvidia carotene库,图像处理方向 )
3. 学个通透:了解原理
3.1 SIMD加速原理
3.2 了解硬件决定的速度极限:Software Optimization Guide
3.3 反汇编分析生成代码质量
4. 其他:相关的研讨会视频、库、文档等
ncnn是腾讯开源,nihui维护的AI推理引擎。由于Neon实现往往跟循环展开等技巧一起使用,代码往往比较长。可以先阅读普通实现的代码实现了解顶层逻辑,再阅读Neon实现的代码。例如,我们希望学习全连接层(innerproduct)的Neon实现,其普通实现的位置在ncnn/src/layer/innerproduct.cpp,对应的Neon加速实现的位置在ncnn/src/layer/arm/innerproduct_arm.cpp。
2. ARMv8 中的 SIMD 运算
示例
4x4 矩阵乘法
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/time.h>
#if __aarch64__
#include <arm_neon.h>
#endif
static void dump(uint16_t **x)
{
int i, j;
uint16_t *xx = (uint16_t *)x;
printf("%s:\n", __func__);
for(i = 0; i < 4; i++) {
for(j = 0; j < 4; j++) {
printf("%3d ", *(xx + (i << 2) + j));
}
printf("\n");
}
}
static void matrix_mul_c(uint16_t aa[][4], uint16_t bb[][4], uint16_t cc[][4])
{
int i = 0, j = 0;
printf("===> func: %s, line: %d\n", __func__, __LINE__);
for(i = 0; i < 4; i++) {
for(j = 0; j < 4; j++) {
cc[i][j] = aa[i][j] * bb[i][j];
}
}
}
#if __aarch64__
static void matrix_mul_neon(uint16_t **aa, uint16_t **bb, uint16_t **cc)
{
printf("===> func: %s, line: %d\n", __func__, __LINE__);
#if 1
uint16_t (*a)[4] = (uint16_t (*)[4])aa;
uint16_t (*b)[4] = (uint16_t (*)[4])bb;
uint16_t (*c)[4] = (uint16_t (*)[4])cc;
printf("aaaaaaaa\n");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
uint16x4_t _cc0;
uint16x4_t _cc1;
uint16x4_t _cc2;
uint16x4_t _cc3;
uint16x4_t _aa0 = vld1_u16((uint16_t*)a[0]);
uint16x4_t _aa1 = vld1_u16((uint16_t*)a[1]);
uint16x4_t _aa2 = vld1_u16((uint16_t*)a[2]);
uint16x4_t _aa3 = vld1_u16((uint16_t*)a[3]);
uint16x4_t _bb0 = vld1_u16((uint16_t*)b[0]);
uint16x4_t _bb1 = vld1_u16((uint16_t*)b[1]);
uint16x4_t _bb2 = vld1_u16((uint16_t*)b[2]);
uint16x4_t _bb3 = vld1_u16((uint16_t*)b[3]);
_cc0 = vmul_u16(_aa0, _bb0);
_cc1 = vmul_u16(_aa1, _bb1);
_cc2 = vmul_u16(_aa2, _bb2);
_cc3 = vmul_u16(_aa3, _bb3);
vst1_u16((uint16_t*)c[0], _cc0);
vst1_u16((uint16_t*)c[1], _cc1);
vst1_u16((uint16_t*)c[2], _cc2);
vst1_u16((uint16_t*)c[3], _cc3);
asm("nop");
asm("nop");
asm("nop");
asm("nop");
#else
printf("bbbbbbbb\n");
int i = 0;
uint16x4_t _aa[4], _bb[4], _cc[4];
uint16_t *a = (uint16_t*)aa;
uint16_t *b = (uint16_t*)bb;
uint16_t *c = (uint16_t*)cc;
for(i = 0; i < 4; i++) {
_aa[i] = vld1_u16(a + (i << 2));
_bb[i] = vld1_u16(b + (i << 2));
_cc[i] = vmul_u16(_aa[i], _bb[i]);
vst1_u16(c + (i << 2), _cc[i]);
}
#endif
}
static void matrix_mul_asm(uint16_t **aa, uint16_t **bb, uint16_t **cc)
{
printf("===> func: %s, line: %d\n", __func__, __LINE__);
uint16_t *a = (uint16_t*)aa;
uint16_t *b = (uint16_t*)bb;
uint16_t *c = (uint16_t*)cc;
#if 0
asm volatile(
"ldr d3, [%0, #0] \n\t"
"ldr d2, [%0, #8] \n\t"
"ldr d1, [%0, #16] \n\t"
"ldr d0, [%0, #24] \n\t"
"ldr d7, [%1, #0] \n\t"
"ldr d6, [%1, #8] \n\t"
"ldr d5, [%1, #16] \n\t"
"ldr d4, [%1, #24] \n\t"
"mul v3.4h, v3.4h, v7.4h \n\t"
"mul v2.4h, v2.4h, v6.4h \n\t"
"mul v1.4h, v1.4h, v5.4h \n\t"
"mul v0.4h, v0.4h, v4.4h \n\t"
//"add v3.4h, v3.4h, v7.4h \n\t"
//"add v2.4h, v2.4h, v6.4h \n\t"
//"add v1.4h, v1.4h, v5.4h \n\t"
//"add v0.4h, v0.4h, v4.4h \n\t"
"str d3, [%2,#0] \n\t"
"str d2, [%2,#8] \n\t"
"str d1, [%2,#16] \n\t"
"str d0, [%2,#24] \n\t"
: "+r"(a), //%0
"+r"(b), //%1
"+r"(c) //%2
:
: "cc", "memory", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7"
);
#else
// test, OK
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm volatile(
//"ld4 {v0.4h, v1.4h, v2.4h, v3.4h}, [%0] \n\t"
"ld4 {v0.4h-v3.4h}, [%0] \n\t"
"ld4 {v4.4h, v5.4h, v6.4h, v7.4h}, [%1] \n\t"
"mul v3.4h, v3.4h, v7.4h \n\t"
"mul v2.4h, v2.4h, v6.4h \n\t"
"mul v1.4h, v1.4h, v5.4h \n\t"
"mul v0.4h, v0.4h, v4.4h \n\t"
"st4 {v0.4h, v1.4h, v2.4h, v3.4h}, [%2] \n\t"
: "+r"(a), //%0
"+r"(b), //%1
"+r"(c) //%2
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
);
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
#endif
}
#endif
int main(int argc, const char *argv[])
{
uint16_t aa[4][4] = {
{1, 2, 3, 4},
{5, 6, 7, 8},
{3, 6, 8, 1},
{2, 6, 7, 1}
};
uint16_t bb[4][4] = {
{1, 3, 5, 7},
{2, 4, 6, 8},
{2, 5, 7, 9},
{5, 2, 7, 1}
};
uint16_t cc[4][4] = {0};
int i, j;
struct timeval tv;
long long start_us = 0, end_us = 0;
dump((uint16_t **)aa);
dump((uint16_t **)bb);
dump((uint16_t **)cc);
/* ******** C **********/
gettimeofday(&tv, NULL);
start_us = tv.tv_sec + tv.tv_usec;
matrix_mul_c(aa, bb, cc);
gettimeofday(&tv, NULL);
end_us = tv.tv_sec + tv.tv_usec;
printf("aa[][]*bb[][] C time %lld us\n", end_us - start_us);
dump((uint16_t **)cc);
#if __aarch64__
/* ******** NEON **********/
memset(cc, 0, sizeof(uint16_t) * 4 * 4);
gettimeofday(&tv, NULL);
start_us = tv.tv_sec + tv.tv_usec;
matrix_mul_neon((uint16_t **)aa, (uint16_t **)bb, (uint16_t **)cc);
gettimeofday(&tv, NULL);
end_us = tv.tv_sec + tv.tv_usec;
printf("aa[][]*bb[][] neon time %lld us\n", end_us - start_us);
dump((uint16_t **)cc);
/* ******** asm **********/
memset(cc, 0, sizeof(uint16_t) * 4 * 4);
gettimeofday(&tv, NULL);
start_us = tv.tv_sec + tv.tv_usec;
matrix_mul_asm((uint16_t **)aa, (uint16_t **)bb, (uint16_t **)cc);
gettimeofday(&tv, NULL);
end_us = tv.tv_sec + tv.tv_usec;
printf("aa[][]*bb[][] asm time %lld us\n", end_us - start_us);
dump((uint16_t **)cc);
#endif
return 0;
}
1 | aarch64-linux-gcc -O3 matrix_4x4_mul.c |
gcc –march=armv8-a [input file] -o [output file]
3. NEON编程, 优化心得及内联汇编使用心得
Very thanks to Orchid (Orchid Blog).
NEON intrinsics
提供了一个连接NEON操作的C函数接口,编译器会自动生成相关的NEON指令,支持ARMv7-A或ARMv8-A平台。
所有的intrinsics函数都在GNU官方说明文档。
一个简单的例子:
//add for int array. assumed that count is multiple of 4
#include<arm_neon.h>
// C version void add_int_c(int* dst, int* src1, int* src2, int count)
{
int i;
for (i = 0; i < count; i++)
dst[i] = src1[i] + src2[i];
}
}
// NEON version void add_float_neon1(int* dst, int* src1, int* src2, int count)
{
int i;
for (i = 0; i < count; i += 4)
{
int32x4_t in1, in2, out;
in1 = vld1q_s32(src1);
src1 += 4;
in2 = vld1q_s32(src2);
src2 += 4;
out = vaddq_s32(in1, in2);
vst1q_s32(dst, out);
dst += 4;
}
}
代码中的vld1q_s32
会被编译器转换成vld1.32 {d0, d1}, [r0]
指令,同理vaddq_s32
和vst1q_s32
被转换成vadd.i32 q0, q0, q0
,vst1.32 {d0, d1}, [r0]
。若不清楚指令意义,请参见ARM® Compiler armasm User Guide - Chapter 12 NEON and VFP Instructions。