Isotonic regression

Isotonic regression

http://stat.wikia.com/wiki/Isotonic_regression


matlab 代码:

http://www.mathworks.com/matlabcentral/fileexchange/47196-graph-based-clustering-and-data-visualization-algorithms/content/improve_JP/toolbox_imp_JP/lsqisotonic.m

在Scikit-learn库中,有一些相对不太常见的回归模型可供选择,比如局部加权回归(Local Regression)、Isotonic Regression等。这里以Isotonic Regression为例来说明如何实现和评估: 首先,你需要安装scikit-learn和相关的数据处理库(如pandas、numpy): ```bash pip install scikit-learn pandas numpy ``` 然后导入必要的模块: ```python import sklearn from sklearn.isotonic import IsotonicRegression from sklearn.model_selection import train_test_split, cross_val_score from sklearn.metrics import mean_squared_error import pandas as pd import numpy as np ``` 假设你已经有了一个数据集(例如`df`),其中包含特征列`X`和目标变量`y`: ```python X = df[['feature1', 'feature2']] # 替换为实际的特征列名 y = df['target'] # 替换为目标变量名 ``` 接下来,将数据划分为训练集和测试集: ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 创建并训练Isotonic Regression模型: ```python ir_model = IsotonicRegression() ir_model.fit(X_train, y_train) ``` 评估模型性能,通常使用交叉验证计算平均均方误差(MSE): ```python cv_scores = cross_val_score(ir_model, X, y, cv=5, scoring='neg_mean_squared_error') mse_scores = -cv_scores # 因cross_val_score返回的是负值,所以取反得到MSE print("Cross-validation MSE scores:", mse_scores) mean_cv_mse = np.mean(mse_scores) print("Mean Cross-validation MSE:", mean_cv_mse) ``` 最后,预测测试集结果,并计算测试集的RMSE(Root Mean Squared Error): ```python y_pred = ir_model.predict(X_test) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) print("Test set RMSE:", rmse) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值