Codeforces Round #244 (Div. 2)

本文探讨了警力资源的有效分配对于维护城市安全的重要性。包括如何合理安排警力应对犯罪事件,选择合适的监狱转移策略以减轻监狱负担,以及确定最少成本下的警力检查站点布局方案。
    

A. Police Recruits

The police department of your city has just started its journey. Initially, they don’t have any manpower. So, they started hiring new recruits in groups.

Meanwhile, crimes keeps occurring within the city. One member of the police force can investigate only one crime during his/her lifetime.

If there is no police officer free (isn't busy with crime) during the occurrence of a crime, it will go untreated.

Given the chronological order of crime occurrences and recruit hirings, find the number of crimes which will go untreated.

Input

The first line of input will contain an integer n (1 ≤ n ≤ 105), the number of events. The next line will contain n space-separated integers.

If the integer is -1 then it means a crime has occurred. Otherwise, the integer will be positive, the number of officers recruited together at that time. No more than 10 officers will be recruited at a time.

Output

Print a single integer, the number of crimes which will go untreated.

Sample test(s)
input
3
-1 -1 1
output
2
input
8
1 -1 1 -1 -1 1 1 1
output
1
input
11
-1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1
output
8
Note

Lets consider the second example:

  1. Firstly one person is hired.
  2. Then crime appears, the last hired person will investigate this crime.
  3. One more person is hired.
  4. One more crime appears, the last hired person will investigate this crime.
  5. Crime appears. There is no free policeman at the time, so this crime will go untreated.
  6. One more person is hired.
  7. One more person is hired.
  8. One more person is hired.

The answer is one, as one crime (on step 5) will go untreated.

   简单的模拟题,-1代表犯人,没一个正整数可以收服该数值个犯人,问最后有多少个犯人没有被收服,, 收服(想起了神奇宝贝)、、、、、

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;

int main()
{
    int n, tp;
    while(~scanf("%d",&n))
    {
        int sum = 0;
        int tot = 0;
        for(int i = 0; i < n; i ++)
        {
            scanf("%d",&tp);
            if(tp >0)
                tot += tp;
            else
            {
                if(tot > 0)
                    tot --;
                else
                    sum ++;
            }
        }
        printf("%d\n",sum);
    }
}

B. Prison Transfer

The prison of your city has n prisoners. As the prison can't accommodate all of them, the city mayor has decided to transfer c of the prisoners to a prison located in another city.

For this reason, he made the n prisoners to stand in a line, with a number written on their chests. The number is the severity of the crime he/she has committed. The greater the number, the more severe his/her crime was.

Then, the mayor told you to choose the c prisoners, who will be transferred to the other prison. He also imposed two conditions. They are,

  • The chosen c prisoners has to form a contiguous segment of prisoners.
  • Any of the chosen prisoner's crime level should not be greater then t. Because, that will make the prisoner a severe criminal and the mayor doesn't want to take the risk of his running away during the transfer.

Find the number of ways you can choose the c prisoners.

Input

The first line of input will contain three space separated integers n (1 ≤ n ≤ 2·105)t (0 ≤ t ≤ 109) and c (1 ≤ c ≤ n). The next line will contain n space separated integers, the ith integer is the severity ith prisoner's crime. The value of crime severities will be non-negative and will not exceed 109.

Output

Print a single integer — the number of ways you can choose the c prisoners.

Sample test(s)
input
4 3 3
2 3 1 1
output
2
input
1 1 1
2
output
0
input
11 4 2
2 2 0 7 3 2 2 4 9 1 4
output
6

    求有多少个连续c个的不大于t 的数字。去不大于t 的数字,记录区间即可,注意首尾的标记。

    (错了八发,一开始以为只是算区间的时候加一减一的问题,改完发现WA,然后又发现并没有判断区间和c的大小,可能会出现负数,又WA,然后以为自己的思路是错的,最后发现是第一个标记的时候,应该为0,详见代码)

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;

int tt[200100];
int vis[200100];  // 代表大于t 的数的位置

int main()
{
    int n, t, c;
    while(~scanf("%d%d%d",&n,&t,&c))
    {
        memset(tt, 0, sizeof(tt));
        memset(vis, 0, sizeof(vis));
        int cnt = 1;
        int sum = 0;
        vis[0] = 0;  // 首标记
        for(int i = 1; i <= n; i ++)
        {
            scanf("%d",&tt[i]);
            if(tt[i] > t)
                vis[cnt ++] = i;
        }
        if(cnt == n + 1)
        {
            printf("0\n");
            continue;
        }
        if(cnt == 1)
        {
            if(n >= c) //可能会出现符号,虚判断
                printf("%d\n",n - c + 1);
            else
                printf("0\n");
            continue;
        }
        vis[cnt] = n + 1;  // 尾标记
        /*for(int i = 0; i <= cnt; i ++)
        {
            printf("--%d\n", vis[i]);
        }*/

        for(int i = 1; i <= cnt + 1; i ++)
        {
            int tm = vis[i] - vis[i - 1] - 1; //区间,加一还是减一还是不操作,需要注意一下
            if(tm >= c)
            sum += (tm - c + 1);
        }
        printf("%d\n",sum);
    }
}

C. Checkposts

Your city has n junctions. There are m one-way roads between the junctions. As a mayor of the city, you have to ensure the security of all the junctions.

To ensure the security, you have to build some police checkposts. Checkposts can only be built in a junction. A checkpost at junction ican protect junction j if either i = j or the police patrol car can go to j from i and then come back to i.

Building checkposts costs some money. As some areas of the city are more expensive than others, building checkpost at some junctions might cost more money than other junctions.

You have to determine the minimum possible money needed to ensure the security of all the junctions. Also you have to find the number of ways to ensure the security in minimum price and in addition in minimum number of checkposts. Two ways are different if any of the junctions contains a checkpost in one of them and do not contain in the other.

Input

In the first line, you will be given an integer n, number of junctions (1 ≤ n ≤ 105). In the next line, n space-separated integers will be given. The ith integer is the cost of building checkpost at the ith junction (costs will be non-negative and will not exceed 109).

The next line will contain an integer m (0 ≤ m ≤ 3·105). And each of the next m lines contains two integers ui and vi (1 ≤ ui, vi ≤ nu ≠ v). A pair ui, vi means, that there is a one-way road which goes from ui to vi. There will not be more than one road between two nodes in the same direction.

Output

Print two integers separated by spaces. The first one is the minimum possible money needed to ensure the security of all the junctions. And the second one is the number of ways you can ensure the security modulo 1000000007 (109 + 7).

Sample test(s)
input
3
1 2 3
3
1 2
2 3
3 2
output
3 1
input
5
2 8 0 6 0
6
1 4
1 3
2 4
3 4
4 5
5 1
output
8 2
input
10
1 3 2 2 1 3 1 4 10 10
12
1 2
2 3
3 1
3 4
4 5
5 6
5 7
6 4
7 3
8 9
9 10
10 9
output
15 6
input
2
7 91
2
1 2
2 1
output
7 1
    题目很长,意思是求需要建多少个警察站,使得全部的能被管辖到,其实就是求有多少个强连通图。最小花费为每个图中的最小值相加,可行方案数,为每个图中有多少个最小花费相乘,我改了一下tarj的模版、、说实话,现在有点忘了。。

    

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;


typedef __int64 LL;
const int INF = 0x3f3f3f3f;
const int MAXN = 1e5 + 100; //点数
const int MAXM = 3*(1e5)+100; //边数
const LL MOD = 1000000000 + 7;

struct Edge
{
    int to, next;
}edge[MAXM];

int in_edge[MAXM];
int out_edge[MAXM];
int head[MAXN],tot;
int val[MAXN];
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN]; 
int Index,top;
int scc; 
LL cost, pp;
int n, m;

bool Instack[MAXN];
int num[MAXN]; 

void addedge(int u, int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}

void Tarjan(int u)
{
    int v;
    Low[u] = DFN[u] = ++Index;
    Stack[top++] = u;
    Instack[u] = true;
    for(int i = head[u]; i != -1; i = edge[i].next)
    {
        v = edge[i].to;
        if( !DFN[v] )
        {
            Tarjan(v);
            if( Low[u] > Low[v] )
                Low[u] = Low[v];
        }
        else if(Instack[v] && Low[u] > DFN[v])
            Low[u] = DFN[v];
    }
    if(Low[u] == DFN[u])
    {
        int sum = 0;
        int minn = INF;
        scc++;
        do
        {
            v = Stack[ --top];
            Instack[v] = false;
            Belong[v] = scc;
            num[scc]++;
            if(minn == val[v])
                sum ++;
            else if(minn > val[v])
                sum = 1, minn = val[v];
        }
        while( v != u);
        cost += minn;
        pp = (pp*sum)% MOD;
    }
}

void solve(int N)
{
    memset(DFN, 0, sizeof(DFN));
    memset(Instack, false, sizeof(Instack));
    memset(num, 0, sizeof(num));
    Index = scc = top = 0;
    for(int i = 1;i <= N; i++)
        if(!DFN[i])
            Tarjan(i);
}

void init()
{
    tot = 0;
    memset(head, -1, sizeof(head));
}

void ans()
{
    cost = 0;
    pp = 1;
    for(int i = 1; i <= n; i ++)
    {
        if(!DFN[i])
            Tarjan(i);
    }
    printf("%I64d %I64d\n",cost, pp);
}

int main()
{
    int a, b;
    while(~scanf("%d",&n))
    {
        init();
        for(int i = 1; i <= n; i ++)
        {
            scanf("%d",&val[i]);
        }
        scanf("%d",&m);
        for(int i = 0; i < m; i ++)
        {
            scanf("%d%d",&a,&b);
            addedge(a,b);
        }
        ans();
    }
}


    

代码下载地址: https://pan.quark.cn/s/bc087ffa872a "测控电路课后习题详解"文件.pdf是一份极具价值的学术资料,其中系统地阐述了测控电路的基础理论、系统构造、核心特性及其实际应用领域。 以下是对该文献的深入解读和系统梳理:1.1测控电路在测控系统中的核心功能测控电路在测控系统的整体架构中扮演着不可或缺的角色。 它承担着对传感器输出信号进行放大、滤除杂音、提取有效信息等关键任务,并且依据测量与控制的需求,执行必要的计算、处理与变换操作,最终输出能够驱动执行机构运作的指令信号。 测控电路作为测控系统中最具可塑性的部分,具备易于放大信号、转换模式、传输数据以及适应多样化应用场景的优势。 1.2决定测控电路精确度的关键要素影响测控电路精确度的核心要素包括:(1)噪声与干扰的存在;(2)失调现象与漂移效应,尤其是温度引起的漂移;(3)线性表现与保真度水平;(4)输入输出阻抗的特性影响。 在这些要素中,噪声干扰与失调漂移(含温度效应)是最为关键的因素,需要给予高度关注。 1.3测控电路的适应性表现测控电路在测控系统中展现出高度的适应性,具体表现在:* 具备选择特定信号、灵活实施各类转换以及进行信号处理与运算的能力* 实现模数转换与数模转换功能* 在直流与交流、电压与电流信号之间进行灵活转换* 在幅值、相位、频率与脉宽信号等不同参数间进行转换* 实现量程调整功能* 对信号实施多样化的处理与运算,如计算平均值、差值、峰值、绝对值,进行求导数、积分运算等,以及实现非线性环节的线性化处理、逻辑判断等操作1.4测量电路输入信号类型对电路结构设计的影响测量电路的输入信号类型对其电路结构设计产生显著影响。 依据传感器的类型差异,输入信号的形态也呈现多样性。 主要可分为...
(IHAOAVOABPvsAOBPvsAVOABPvsPSOBP)非洲秃鹫融合天鹰优化BP天鹰优化BP非州秃鹫BP粒子群(Matlab代码实现)内容概要:本文档主要围绕多种智能优化算法在不同工程领域的应用展开,重点介绍了非洲秃鹫优化算法(AVOA)、天鹰优化算法(AO)与BP神经网络的融合改进,并与其他经典算法如粒子群优化(PSO)进行对比分析。所有案例均提供Matlab代码实现,涵盖电力系统优化、路径规划、微电网调度、无人机控制、信号处理等多个方向,强调算法的科研复现能力与实际仿真价值。文档还展示了丰富的技术服务体系,涉及机器学习、深度学习、路径规划、通信与电力系统等多个前沿领域。; 适合人群:具备一定Matlab编程基础,从事科研工作或工程仿真的研究生、高校教师及企业研发人员,尤其适用于从事智能优化算法研究与应用的相关技术人员。; 使用场景及目标:①用于学术论文复现,特别是SCI/EI期刊中关于优化算法的实验部分;②为电力系统、无人机、储能调度等领域提供算法仿真技术支持;③帮助研究人员快速掌握多种智能算法的实现方法并进行性能对比。; 阅读建议:建议结合文档提供的网盘资源下载完整代码,按照目录顺序逐步学习,重点关注算法原理与Matlab实现的结合方式,同时可将文中案例作为自身课题的参考模板进行二次开发与创新。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值