
3 contributions:
- We propose a Deep Generative Correlation Alignment Network(DGCAN) to synthesize CAD objects contour from the CAD-synthetic domain with natural textures from the real image domain.
- We explore the effect of applying the content and CORAL losses on different layers and determine the optimal configuration to generate the most promising stimuli.
- We empirically show the effectiveness of our model over several state-of-the-art methods by testing on real image datasets.

Shape Preserving loss:

Naturalness loss:

本文提出了一种名为DGCAN的深度生成相关性对齐网络,用于将CAD-synthetic领域的CAD对象轮廓与真实图像领域的自然纹理进行合成。通过探索内容和CORAL损失在不同层的效果,确定了最优配置以生成最具前景的刺激物。实验证明,该模型在多个基准数据集上的表现优于现有先进技术。
1万+

被折叠的 条评论
为什么被折叠?



