Real-Time monocular depth estimation using synthetic data with domain adaptation via IST

本文介绍了一种直接监督的轻量级深度预测模型,利用跳过连接进行单目深度估计,有效解决了域偏移问题。该模型能从高质量合成深度训练数据中预测深度,并通过风格迁移实现域适应。然而,在照明变化和饱和度调整方面存在局限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4 Contributions:

  1. synthetic depth prediction - a directly supervised model using a light-weight architecture with skip connections that can predict depth based on high-quality synthetic depth training data.
  2.  domain adaptation via style transfer - a solution to the issue of domain bias via style transfer
  3. efficacy - an efficient and novel approach to monocular depth estimation that produces pixel-perfect depth
  4. reproducibility - simple and effective algorithm relying on data that is easily and openly obtained.

Limitations:

The biggest issue is that the approach is incapable of adapting to sudden lighting changes and saturation during style transfer. When the two domains significantly vary in intensity differences between lit areas and shadows(as is the case with our approach), shadows can be recognized as elevated surfaces or foreground objects post style transfer.

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值