Concat layer
在Deep Neural Network中,最主要的两种提高模型性能的优化方向就是使模型wider or deeper。
在使模型变宽时,常需要把多个分支合并起来作为后续层的输入。它就是今天要介绍的concat layer。
按照惯例,我们先来看下concat layer的参数。
message ConcatParameter {
// The axis along which to concatenate -- may be negative to index from the
// end (e.g., -1 for the last axis). Other axes must have the
// same dimension for all the bottom blobs.
// By default, ConcatLayer concatenates blobs along the "channels" axis (1).
optional int32 axis = 2 [default = 1]; //caffe中,blobs一般表示成NxCxHxW. 也就是说,axis默认在channel维度来进行concat.
// DEPRECATED: alias for "axis" -- does not support negative indexing. 已弃用,axis的别名,不支持负数索引
optional uint32 concat_dim = 1 [default = 1];
}
concat作为链接多个输入的工具层,其参数很少,只有一个指定是根据N维度还是根据C维度来进行链接的参数。 该层要求至少有两个输入,即bottom的size >= 2
,如下所示:
x1:=N×C×H×Wx2:=N×C×H×W⋮xk:=N×C×H×Woutput:=kN×C×H×Woroutput:=N×kC×H×W
至此,我们大致了解了concat层怎么用呢。接下来,我们介绍介绍它的实现。
向前传播时,实现比较简单。
template <typename Dtype>
void ConcatLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
if (bottom.size() == 1) { return; } \\如果只有一个输入,不执行操作
Dtype* top_data = top[0]->mutable_cpu_data();
int offset_concat_axis = 0;
const int top_concat_axis = top[0]->shape(concat_axis_);
for (int i = 0; i < bottom.size(); ++i) {
const Dtype* bottom_data = bottom[i]->cpu_data(); \\第i个输入的读指针
const int bottom_concat_axis = bottom[i]->shape(concat_axis_);
for (int n = 0; n < num_concats_; ++n) {
caffe_copy(bottom_concat_axis * concat_input_size_,
bottom_data + n * bottom_concat_axis * concat_input_size_,
top_data + (n * top_concat_axis + offset_concat_axis)
* concat_input_size_); \\把所有输入根据指定的axis连接起来
}
offset_concat_axis += bottom_concat_axis;
}
单看主要函数显然有些不清不楚,接下来我们看看layersetup和reshape就能明白它具体是怎么做的了。
template <typename Dtype>
void ConcatLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const ConcatParameter& concat_param = this->layer_param_.concat_param(); \\获取concat参数,即axis或者concat_dim,不能同时指定。
CHECK(!(concat_param.has_axis() && concat_param.has_concat_dim()))
<< "Either axis or concat_dim should be specified; not both.";
}
template <typename Dtype>
void ConcatLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const int num_axes = bottom[0]->num_axes(); \\获取输入维度数
const ConcatParameter& concat_param = this->layer_param_.concat_param();
if (concat_param.has_concat_dim()) { \\如果指定concat_dim,判断是否非负
concat_axis_ = static_cast<int>(concat_param.concat_dim());
// Don't allow negative indexing for concat_dim, a uint32 -- almost
// certainly unintended.
CHECK_GE(concat_axis_, 0) << "casting concat_dim from uint32 to int32 "
<< "produced negative result; concat_dim must satisfy "
<< "0 <= concat_dim < " << kMaxBlobAxes;
CHECK_LT(concat_axis_, num_axes) << "concat_dim out of range."; \\concat_dim不能超过输入的维度数
} else {
concat_axis_ = bottom[0]->CanonicalAxisIndex(concat_param.axis()); \\指定了axis,转换成非负索引得到concat_axis
}
// Initialize with the first blob.
vector<int> top_shape = bottom[0]->shape(); \\初始化输出,shape与输入一致
num_concats_ = bottom[0]->count(0, concat_axis_); \\需要concat的个数,
concat_input_size_ = bottom[0]->count(concat_axis_ + 1); \\每个concat的数据量大小
int bottom_count_sum = bottom[0]->count(); \\输入总的特征值个数,初始时只有第一个输入的个数
for (int i = 1; i < bottom.size(); ++i) { \\
CHECK_EQ(num_axes, bottom[i]->num_axes()) \\判断每个输入维度是否一致
<< "All inputs must have the same #axes.";
for (int j = 0; j < num_axes; ++j) { \\除了进行concat的那个维度外,其他维度的大小是否保持一致
if (j == concat_axis_) { continue; }
CHECK_EQ(top_shape[j], bottom[i]->shape(j))
<< "All inputs must have the same shape, except at concat_axis.";
}
bottom_count_sum += bottom[i]->count(); \\累加第i个输入的个数
top_shape[concat_axis_] += bottom[i]->shape(concat_axis_); \\累加输出的指定axis的值
}
top[0]->Reshape(top_shape); \\reshape输出blob
CHECK_EQ(bottom_count_sum, top[0]->count()); \\检查bottom_count_sum和top_count的数据量是否一致
if (bottom.size() == 1) {
top[0]->ShareData(*bottom[0]); \\只有一个输入,直接复制成输出
top[0]->ShareDiff(*bottom[0]); \\梯度shape也和输入一致
}
源码解析这里基本上就明白concat层的原理了,最后我们来看下它的后向传播。其原理十分简单,把输出求得的梯度直接复制给对应的输入即可。
template <typename Dtype>
void ConcatLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
if (bottom.size() == 1) { return; }
const Dtype* top_diff = top[0]->cpu_diff();
int offset_concat_axis = 0;
const int top_concat_axis = top[0]->shape(concat_axis_);
for (int i = 0; i < bottom.size(); ++i) {
const int bottom_concat_axis = bottom[i]->shape(concat_axis_); \\从输出的梯度直接复制到对应的输入
if (propagate_down[i]) {
Dtype* bottom_diff = bottom[i]->mutable_cpu_diff();
for (int n = 0; n < num_concats_; ++n) {
caffe_copy(bottom_concat_axis * concat_input_size_, top_diff +
(n * top_concat_axis + offset_concat_axis) * concat_input_size_,
bottom_diff + n * bottom_concat_axis * concat_input_size_);
}
}
offset_concat_axis += bottom_concat_axis;
}
}