Visual relationship dataset

本文介绍VRD和VisualGenome数据集,分别包含5000张图像与108249张图片,涵盖丰富视觉关系与语义信息,用于训练和评估图像中目标识别与关系理解的人工智能算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、VRD数据集

结果展示:

  • 数据集包括100个目标类别以及目标对应的70个关系类别,其中,

100个目标类别为:

1th object category: person,2th object category: sky,3th object category: building,

4th object category: truck,5th object category: bus,6th object category: table,

7th object category: shirt,8th object category: chair, 9th object category: car

10th object category: train,11th object category: glasses,12th object category: tree

13th object category: boat,14th object category: hat, 15th object category: trees

16th object category: grass,17th object category: pants,18th object category: road

19th object category: motorcycle,20th object category: jacket,21th object category: monitor

22th object category: wheel,23th object category: umbrella,24th object category: plate

25th object category: bike,26th object category: clock,27th object category: bag

28th object category: shoe,29th object category: laptop,30th object category: desk

31th object category: cabinet,32th object category: counter,33th object category: bench

34th object category: shoes,35th object category: tower,36th object category: bottle

37th object category: helmet,38th object category: stove,39th object category: lamp

40th object category: coat,41th object category: bed,42th object category: dog

43th object category: mountain,44th object category: horse,45th object category: plane

46th object category: roof,47th object category: skateboard,48th object category: traffic light

49th object category: bush,50th object category: phone,51th object category: airplane

52th object category: sofa,53th object category: cup,54th object category: sink

55th object category: shelf,56th object category: box,57th object category: van

58th object category: hand,59th object category: shorts,60th object category: post

61th object category: jeans,62th object category: cat, 63th object category: sunglasses

64th object category: bowl, 65th object category: computer,66th object category: pillow

67th object category: pizza,68th object category: basket,69th object category: elephant

70th object category: kite,71th object category: sand,72th object category: keyboard

73th object category: plant,74th object category: can,75th object category: vase,

76th object category: refrigerator,77th object category: cart,78th object category: skis

79th object category: po,80th object category: surfboard,81th object category: paper

82th object category: mouse,83th object category: trash can, 84th object category: cone

85th object category: camera,86th object category: ball,87th object category: bear

88th object category: giraffe,89th object category: tie,90th object category: luggage

91th object category: faucet,92th object category: hydrant,93th object category: snowboard

94th object category: oven,95th object category: engine,96th object category: watch

97th object category: face, 98th object category: street,99th object category: ramp

100th object category: suitcase

 

70个关系类别为:

1th predicate category: on,2th predicate category: wear,3th predicate category: has

4th predicate category: next to,5th predicate category: sleep next to,6th predicate category: sit next to

7th predicate category: stand next to,8th predicate category: park next,9th predicate category: walk next to

10th predicate category: above,11th predicate category: behind,12th predicate category: stand behind

13th predicate category: sit behind,14th predicate category: park behind,15th predicate category: in the front of

16th predicate category: under,17th predicate category: stand under,18th predicate category: sit under

19th predicate category: near, 20th predicate category: walk to,21th predicate category: walk

22th predicate category: walk past,23th predicate category: in,24th predicate category: below

25th predicate category: beside,26th predicate category: walk beside,27th predicate category: over

28th predicate category: hold,29th predicate category: by,30th predicate category: beneath

31th predicate category: with,32th predicate category: on the top of,33th predicate category: on the left of

34th predicate category: on the right of,35th predicate category: sit on,36th predicate category: ride

37th predicate category: carry,38th predicate category: look,39th predicate category: stand on

40th predicate category: use,41th predicate category: at,42th predicate category: attach to

43th predicate category: cover,44th predicate category: touch,45th predicate category: watch

46th predicate category: against,47th predicate category: inside,48th predicate category: adjacent to

49th predicate category: across,50th predicate category: contain,51th predicate category: drive

52th predicate category: drive on,53th predicate category: taller than,54th predicate category: eat

55th predicate category: park on,56th predicate category: lying on,57th predicate category: pull

58th predicate category: talk,59th predicate category: lean on,60th predicate category: fly

61th predicate category: face,62th predicate category: play with,63th predicate category: sleep on

64th predicate category: outside of,65th predicate category: rest on,66th predicate category: follow

67th predicate category: hit,68th predicate category: feed,69th predicate category: kick

70th predicate category: skate on

2、Visual Genome 数据

Visual Genome 数据集是斯坦福大学维护的图像及图像内容语义信息的数据集,相比于著名的 ImageNet 图像标注数据集(也由斯坦福大学维护),Visual Genome 数据集附加了更为丰富的语义信息,用以拓展更加丰富的基于图像及语义信息的  人工智能 应用。目前包括 108249 张图片、420 万区域内容描述(Region Descriptions)、170 万图像内容问答(Visual Question Answers)、210 万对象案例(Object Instances)、180 万属性(Attributes)、180 万关系(Relationships)。该数据集最初于 2015 年由斯坦福大学发布,而后 2016 年发布 1.2 版本,2017 年发布 1.4 版本。

在关系识别方向,目标的类别为200,关系的类别为100.

官网地址:http://visualgenome.org/

1. Images

2. Image meta data

7. Relationships

<think>好的,我现在需要解决用户的问题:如何在WinForms中使用Crystal Reports将Dataset数据通过.rpt文件生成PDF。用户还提到了参考引用,其中引用[1]是关于在C#中使用Crystal Reports与Access数据库,引用[2]是关于使用反射转换DataRow和对象。 首先,我得回忆一下Crystal Reports在WinForms中的基本使用步骤。通常,这个过程包括设计报表文件(.rpt)、在应用程序中加载报表、绑定数据源,然后导出为PDF。用户提到的是使用Dataset,所以需要确认如何将Dataset中的数据传递给报表。 接下来,我需要考虑如何将Dataset与Crystal Reports集成。Crystal Reports通常通过设置报表的数据源来绑定数据。在代码中,应该将Dataset中的某个DataTable作为报表的数据源。例如,如果Dataset里有一个名为“DataTable1”的表,那么需要将这个表赋值给报表的SetDataSource方法。 然后,导出为PDF的部分。Crystal Reports的ReportDocument类有一个ExportToDisk方法,可以用来导出PDF文件。需要指定正确的导出格式和文件路径。同时,用户可能需要处理文件路径是否存在、权限问题等异常情况。 另外,用户提供的引用中提到了使用Access数据库和反射转换DataRow,但当前问题可能不需要这些。不过,如果有需要将对象转换为DataRow的情况,可能需要引用[2]中的反射方法,但在这个具体场景中,直接使用Dataset作为数据源可能更直接。 还需要检查是否需要安装Crystal Reports运行时库,以及项目中是否引用了必要的DLL,比如CrystalDecisions.Shared和CrystalDecisions.CrystalReports.Engine。这些引用对于代码能否正常运行至关重要。 可能的步骤总结: 1. 设计.rpt报表文件,并确保其数据源结构与Dataset中的DataTable匹配。 2. 在WinForms项目中添加对Crystal Reports库的引用。 3. 编写代码加载.rpt文件,设置数据源为Dataset中的DataTable。 4. 调用导出方法生成PDF。 需要验证这些步骤是否正确,是否有遗漏。比如,是否需要处理报表中的参数,或者是否需要先填充Dataset的数据。用户可能需要先确保Dataset已经被正确填充,然后再绑定到报表。 另外,异常处理也是一个重要部分,比如在导出时可能遇到的错误,如文件正在被占用、路径无效等,需要在代码中加入try-catch块来捕获异常并提供友好的错误提示。 最后,提供一个示例代码,展示完整的流程,从加载报表、设置数据源到导出PDF,确保代码语法正确,并符合用户的要求。同时,提醒用户注意引用和运行时环境的配置,这可能影响程序能否正常运行。</think>在WinForms中使用Crystal Reports将Dataset数据导出为PDF的步骤如下: ### 步骤说明 1. **设计报表文件(.rpt)** - 在Crystal Reports中创建报表,数据源选择`ADO.NET Dataset`,字段需与Dataset中的DataTable结构一致[^1]。 2. **添加引用和运行时** - 在项目中引用`CrystalDecisions.CrystalReports.Engine`和`CrystalDecisions.Shared`。 - 确保安装[SAP Crystal Reports运行时](https://www.sap.com/cmp/neo/sem/customer-relationship-management/crystal-reports/visual-studio.html)以支持导出功能。 3. **代码实现** ```csharp using CrystalDecisions.CrystalReports.Engine; using CrystalDecisions.Shared; public void ExportDatasetToPDF(DataSet dataSet, string reportPath, string outputPath) { // 加载报表文件 ReportDocument report = new ReportDocument(); report.Load(reportPath); // 绑定Dataset到报表 report.SetDataSource(dataSet.Tables["YourDataTableName"]); // 替换为实际的DataTable名称 // 配置PDF导出选项 ExportOptions exportOpts = new ExportOptions(); exportOpts.ExportFormatType = ExportFormatType.PortableDocFormat; exportOpts.FormatOptions = new PdfFormatOptions(); exportOpts.ExportDestinationType = ExportDestinationType.DiskFile; // 设置输出路径 DiskFileDestinationOptions diskOpts = new DiskFileDestinationOptions(); diskOpts.DiskFileName = outputPath; exportOpts.DestinationOptions = diskOpts; // 执行导出 report.Export(exportOpts); report.Close(); } ``` 4. **调用示例** ```csharp // 假设已填充名为ds的DataSet ExportDatasetToPDF(ds, @"C:\Reports\MyReport.rpt", @"C:\Output\Report.pdf"); ``` ### 关键注意事项 - **数据映射**:确保.rpt文件中的字段名与DataTable的列名完全匹配。 - **异常处理**:添加`try-catch`块处理文件访问权限、路径错误等问题。 - **依赖项**:部署时需要包含`Crystal Reports运行时`,否则会报错`Could not load file or assembly`。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值