Matrix
Description
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
Output
For each querying output one line, which has an integer representing A[x, y].
There is a blank line between every two continuous test cases.
二维树状数组的变形,也可以使用二维线段树写
需要注意的点是,在0/1变换时,记录变换的次数mod2即可得出答案
此题和树状数组的联系:
每次给矩阵四个角 (x1,y1) (x2+1,y2+1) (x1,y2+1) (x2+1,y1)的变换值+1(利用update),即可更新全部图形上的每个点,具体计算方法即是计算原点到此点所构成的矩阵mod2的值,使用二维树状数组的sum即可
具体证明:对于以下9个区域逐一进行讨论
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1500;
int c[maxn][maxn];
int n,N,m,q;
inline int lowbit(int x)
{
return x&(-x);
}
void update(int x,int y)
{
for(int i=x;i<=n;i+=lowbit(i))
for(int j=y;j<=n;j+=lowbit(j))
c[i][j]++;
}
int sum(int x,int y)
{
int ans=0;
for(int i=x;i>0;i-=lowbit(i))
for(int j=y;j>0;j-=lowbit(j))
ans+=c[i][j];
return ans;
}
void add()
{
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
getchar();
update(x2+1,y2+1);
update(x1,y1);
update(x1,y2+1);
update(x2+1,y1);//更新四个角上的点
}
void cal()
{
int x,y;
scanf("%d%d",&x,&y);
getchar();
printf("%d\n",sum(x,y)%2);//计算矩阵内的总数mod2
}
int main()
{
scanf("%d",&q);
for(int k=1;k<=q;k++)
{
memset(c,0,sizeof(c));
scanf("%d%d",&n,&m);
getchar();
char order;
for(int i=1;i<=m;i++)
{
scanf("%c",&order);
{
switch(order)
{
case 'C':add();break;
case 'Q':cal();break;
}
}
}
printf("\n");
}
}
本文介绍如何使用二维树状数组解决特定矩阵操作问题,包括矩阵元素的0/1翻转及查询,通过更新矩阵四角来实现整块区域的变化,并提供了一个具体的编程实现案例。
1568

被折叠的 条评论
为什么被折叠?



