Find the area enclosed by the ellipse x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1a2x2+b2y2=1
-
Trigonometric Substitutions
y=b1−x2a2y=b \sqrt[]{1-\frac{x^2}{a^2}}y=b1−a2x2
let x=asinθx=a\sin\thetax=asinθ then y=bcosθy=b\cos\thetay=bcosθ , dx=acosθdθdx=a\cos\theta d\thetadx=acosθdθ
since −a<x<a-a<x<a−a<x<a so −π/2<θ<π/2-π/2 < θ < π/2−π/2<θ<π/2A=∫−aa2y dxA=\int_{-a}^{a} 2y\, dxA=∫−aa2ydx
=∫−π/2π/22abcos2θ dθ=\int_{-π/2}^{π/2} 2ab\cos^2θ\, dθ=∫−π/2π/22abcos2θdθ
=ab[12sin2θ+θ]−π/2π/2=ab[\frac{1}{2}\sin2θ+θ]_{-π/2}^{π/2}=ab[21sin2θ+θ]−π/2π/2
=πab=πab=πab -
Change of vareables in multiple Integrals and polar coordinates
let u=x/a,v=y/bu=x/a, v=y/bu=x/a,v=y/b, we have x=au,y=bvx=au, y=bvx=au,y=bv and u2+v2=1u^2+v^2=1u2+v2=1
The Jacobian of the transformation from (x, y) to (u, v) is
∂(x,y)∂(u,v)=∣∂(x)∂(u)∂(x)∂(v)∂(y)∂(u)∂(y)∂(v)∣=∣a00b∣=ab\frac{\partial (x,y)}{\partial (u,v)}= \left| \begin{matrix} \frac{\partial (x)}{\partial (u)} & \frac{\partial (x)}{\partial (v)} \\ \frac{\partial (y)}{\partial (u)} & \frac{\partial (y)}{\partial (v)} \end{matrix} \right|= \left| \begin{matrix} a & 0 \\ 0 & b \end{matrix} \right|=ab∂(u,v)∂(x,y)=∂(u)∂(x)∂(u)∂(y)∂(v)∂(x)∂(v)∂(y)=a00b=abA=∬RdA=∬S∣∂(x,y)∂(u,v)∣ du dv=∬Sab du dvA=\iint_{R}dA=\iint_{S} |\frac{\partial (x,y)}{\partial (u,v)}| \,du\,dv=\iint_{S} ab \,du\,dvA=∬RdA=∬S∣∂(u,v)∂(x,y)∣dudv=∬Sabdudv
let u=rcosθu = r\cos\thetau=rcosθ and v=rsinθv=r\sin\thetav=rsinθ,
The Jacobian of the transformation from (u, v) to (r, θ) is
∂(u,v)∂(r,θ)=∣∂(u)∂(r)∂(u)∂(θ)∂(v)∂(r)∂(v)∂(θ)∣=∣cosθ−rsinθsinθrcosθ∣=r\frac{\partial (u,v)}{\partial (r,\theta)}= \left| \begin{matrix} \frac{\partial (u)}{\partial (r)} & \frac{\partial (u)}{\partial (\theta)} \\ \frac{\partial (v)}{\partial (r)} & \frac{\partial (v)}{\partial (\theta)} \end{matrix} \right|= \left| \begin{matrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{matrix} \right|=r∂(r,θ)∂(u,v)=∂(r)∂(u)∂(r)∂(v)∂(θ)∂(u)∂(θ)∂(v)=cosθsinθ−rsinθrcosθ=rthen
A=∬Sab du dv==∬Sab ∣∂(u,v)∂(r,θ)∣ dr dθ=∫02π∫01abr dr dθ=πabA=\iint_{S} ab \,du\,dv==\iint_{S} ab \, |\frac{\partial (u,v)}{\partial (r,\theta)}| \,dr\,d\theta=\int_{0}^{2\pi}\int_0^1 abr\,dr\,d\theta=\pi abA=∬Sabdudv==∬Sab∣∂(r,θ)∂(u,v)∣drdθ=∫02π∫01abrdrdθ=πab -
Green’s Theorem
The Green’s Theorem gives the following formulas for the area of D:
A=∮Cx dy=∮Cy dx=12∮Cx dy−y dxA=\oint_C x \,dy=\oint_C y \,dx=\frac{1}{2} \oint_C x \,dy-y \,dxA=∮Cxdy=∮Cydx=21∮Cxdy−ydxThe ellipse has parametric equations x=acostx = a \cos tx=acost and y=bsinty = b \sin ty=bsint, where 0<t<2π0 < t < 2\pi0<t<2π. Using the third formula in Equation, we have
A=12∮Cx dy−y dxA=\frac{1}{2} \oint_C x \,dy-y \,dxA=21∮Cxdy−ydx
=12∫02π(acost)(bcost)dt−(bsint)(−asint)dt=\frac{1}{2} \int_0^{2\pi}(a \cos t)(b \cos t) dt - (b \sin t)(-a \sin t) dt=21∫02π(acost)(bcost)dt−(bsint)(−asint)dt
=ab2∫02πdt=πab=\frac{ab}{2} \int_0^{2\pi} dt=πab=2ab∫02πdt=πab