Find the area enclosed by the ellipse x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1
-
Trigonometric Substitutions
y = b 1 − x 2 a 2 y=b \sqrt[]{1-\frac{x^2}{a^2}} y=b1−a2x2
let x = a sin θ x=a\sin\theta x=asinθ then y = b cos θ y=b\cos\theta y=bcosθ , d x = a cos θ d θ dx=a\cos\theta d\theta dx=acosθdθ
since − a < x < a -a<x<a −a<x<a so − π / 2 < θ < − π / 2 -π/2 < θ < -π/2 −π/2<θ<−π/2A = ∫ − a a 2 y d x A=\int_{-a}^{a} 2y\, dx A=∫−aa2ydx
= ∫ − π / 2 π / 2 2 a b cos 2 θ d θ =\int_{-π/2}^{π/2} 2ab\cos^2θ\, dθ =∫−π/2π/22abcos2θdθ
= a b [ 1 2 sin 2 θ + θ ] − π / 2 π / 2 =ab[\frac{1}{2}\sin2θ+θ]_{-π/2}^{π/2} =ab[21sin2θ+θ]−π/2π/2
= π a b =πab =πab -
Change of vareables in multiple Integrals and polar coordinates
let u = x / a , v = y / b u=x/a, v=y/b u=x/a,v=y/b, we have x = a u , y = b v x=au, y=bv x=au,y=bv and u 2 + v 2 = 1 u^2+v^2=1 u2+v2=1
The Jacobian of the transformation T is
∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ ( x ) ∂ ( u ) ∂ ( x ) ∂ ( v ) ∂ ( y ) ∂ ( u ) ∂ ( y ) ∂ ( v ) ∣ = ∣ a 0 b 0 ∣ = a b \frac{\partial (x,y)}{\partial (u,v)}= \left| \begin{matrix} \frac{\partial (x)}{\partial (u)} & \frac{\partial (x)}{\partial (v)} \\ \frac{\partial (y)}{\partial (u)} & \frac{\partial (y)}{\partial (v)} \end{matrix} \right|= \left| \begin{matrix} a & 0 \\ b & 0 \end{matrix} \right|=ab ∂(u,v)∂(x,y)=∣∣∣∣∣∂(u)∂(x)∂(u)∂(y)∂(v)∂(x)∂(v)∂(y)∣∣∣∣∣=∣∣∣∣ab00∣∣∣∣=abA = ∬ R d A = ∬ S ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ d u d v = ∬ S a b d u d v A=\iint_{R}dA=\iint_{S} |\frac{\partial (x,y)}{\partial (u,v)}| \,du\,dv=\iint_{S} ab \,du\,dv A=∬RdA=∬S∣∂(u,v)∂(x,y)∣dudv=∬Sabdudv
let u = r cos θ u = r\cos\theta u=rcosθ and v = r sin θ v=r\sin\theta v=rsinθ, then
A = ∬ S a b d u d v = ∫ 0 2 π ∫ 0 1 a b r d r d θ = π a b A=\iint_{S} ab \,du\,dv=\int_{0}^{2\pi}\int_0^1 abr\,dr\,d\theta=\pi ab A=∬Sabdudv=∫02π∫01abrdrdθ=πab -
Green’s Theorem
The Green’s Theorem gives the following formulas for the area of D:
A = ∮ C x d y = ∮ C y d x = 1 2 ∮ C x d y − y d x A=\oint_C x \,dy=\oint_C y \,dx=\frac{1}{2} \oint_C x \,dy-y \,dx A=∮Cxdy=∮Cydx=21∮Cxdy−ydxThe ellipse has parametric equations x = a cos t x = a \cos t x=acost and y = b sin t y = b \sin t y=bsint, where 0 < t < 2 0 < t < 2 0<t<2. Using the third formula in Equation, we have
A = 1 2 ∮ C x d y − y d x A=\frac{1}{2} \oint_C x \,dy-y \,dx A=21∮Cxdy−ydx
= 1 2 ∫ 0 2 π ( a cos t ) ( b cos t ) d t − ( b sin t ) ( − a sin t ) d t =\frac{1}{2} \int_0^{2\pi}(a \cos t)(b \cos t) dt - (b \sin t)(-a \sin t) dt =21∫02π(acost)(bcost)dt−(bsint)(−asint)dt
= a b 2 ∫ 0 2 π d t = π a b =\frac{ab}{2} \int_0^{2\pi} dt=πab =2ab∫02πdt=πab