微积分中计算椭圆面积的几种方法

本文介绍了通过三角替换、变量变换和极坐标以及格林定理等四种方法来计算椭圆的面积,最终得出面积公式为πab。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Find the area enclosed by the ellipse x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1a2x2+b2y2=1

  1. Trigonometric Substitutions
    y=b1−x2a2y=b \sqrt[]{1-\frac{x^2}{a^2}}y=b1a2x2
    let x=asin⁡θx=a\sin\thetax=asinθ then y=bcos⁡θy=b\cos\thetay=bcosθ , dx=acos⁡θdθdx=a\cos\theta d\thetadx=acosθdθ
    since −a<x<a-a<x<aa<x<a so −π/2<θ<π/2-π/2 < θ < π/2π/2<θ<π/2

    A=∫−aa2y dxA=\int_{-a}^{a} 2y\, dxA=aa2ydx
    =∫−π/2π/22abcos⁡2θ dθ=\int_{-π/2}^{π/2} 2ab\cos^2θ\, dθ=π/2π/22abcos2θdθ
    =ab[12sin⁡2θ+θ]−π/2π/2=ab[\frac{1}{2}\sin2θ+θ]_{-π/2}^{π/2}=ab[21sin2θ+θ]π/2π/2
    =πab=πab=πab

  2. Change of vareables in multiple Integrals and polar coordinates

    let u=x/a,v=y/bu=x/a, v=y/bu=x/a,v=y/b, we have x=au,y=bvx=au, y=bvx=au,y=bv and u2+v2=1u^2+v^2=1u2+v2=1

    The Jacobian of the transformation from (x, y) to (u, v) is
    ∂(x,y)∂(u,v)=∣∂(x)∂(u)∂(x)∂(v)∂(y)∂(u)∂(y)∂(v)∣=∣a00b∣=ab\frac{\partial (x,y)}{\partial (u,v)}= \left| \begin{matrix} \frac{\partial (x)}{\partial (u)} & \frac{\partial (x)}{\partial (v)} \\ \frac{\partial (y)}{\partial (u)} & \frac{\partial (y)}{\partial (v)} \end{matrix} \right|= \left| \begin{matrix} a & 0 \\ 0 & b \end{matrix} \right|=ab(u,v)(x,y)=(u)(x)(u)(y)(v)(x)(v)(y)=a00b=ab

    A=∬RdA=∬S∣∂(x,y)∂(u,v)∣ du dv=∬Sab du dvA=\iint_{R}dA=\iint_{S} |\frac{\partial (x,y)}{\partial (u,v)}| \,du\,dv=\iint_{S} ab \,du\,dvA=RdA=S(u,v)(x,y)dudv=Sabdudv

    let u=rcos⁡θu = r\cos\thetau=rcosθ and v=rsin⁡θv=r\sin\thetav=rsinθ,

    The Jacobian of the transformation from (u, v) to (r, θ) is
    ∂(u,v)∂(r,θ)=∣∂(u)∂(r)∂(u)∂(θ)∂(v)∂(r)∂(v)∂(θ)∣=∣cos⁡θ−rsin⁡θsin⁡θrcos⁡θ∣=r\frac{\partial (u,v)}{\partial (r,\theta)}= \left| \begin{matrix} \frac{\partial (u)}{\partial (r)} & \frac{\partial (u)}{\partial (\theta)} \\ \frac{\partial (v)}{\partial (r)} & \frac{\partial (v)}{\partial (\theta)} \end{matrix} \right|= \left| \begin{matrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{matrix} \right|=r(r,θ)(u,v)=(r)(u)(r)(v)(θ)(u)(θ)(v)=cosθsinθrsinθrcosθ=r

    then
    A=∬Sab du dv==∬Sab ∣∂(u,v)∂(r,θ)∣ dr dθ=∫02π∫01abr dr dθ=πabA=\iint_{S} ab \,du\,dv==\iint_{S} ab \, |\frac{\partial (u,v)}{\partial (r,\theta)}| \,dr\,d\theta=\int_{0}^{2\pi}\int_0^1 abr\,dr\,d\theta=\pi abA=Sabdudv==Sab(r,θ)(u,v)drdθ=02π01abrdrdθ=πab

  3. Green’s Theorem

    The Green’s Theorem gives the following formulas for the area of D:
    A=∮Cx dy=∮Cy dx=12∮Cx dy−y dxA=\oint_C x \,dy=\oint_C y \,dx=\frac{1}{2} \oint_C x \,dy-y \,dxA=Cxdy=Cydx=21Cxdyydx

    The ellipse has parametric equations x=acos⁡tx = a \cos tx=acost and y=bsin⁡ty = b \sin ty=bsint, where 0<t<2π0 < t < 2\pi0<t<2π. Using the third formula in Equation, we have
    A=12∮Cx dy−y dxA=\frac{1}{2} \oint_C x \,dy-y \,dxA=21Cxdyydx
    =12∫02π(acos⁡t)(bcos⁡t)dt−(bsin⁡t)(−asin⁡t)dt=\frac{1}{2} \int_0^{2\pi}(a \cos t)(b \cos t) dt - (b \sin t)(-a \sin t) dt=2102π(acost)(bcost)dt(bsint)(asint)dt
    =ab2∫02πdt=πab=\frac{ab}{2} \int_0^{2\pi} dt=πab=2ab02πdt=πab

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值