微积分中计算椭圆面积的几种方法

本文介绍了通过三角替换、变量变换和极坐标以及格林定理等四种方法来计算椭圆的面积,最终得出面积公式为πab。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Find the area enclosed by the ellipse x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1

  1. Trigonometric Substitutions
    y = b 1 − x 2 a 2 y=b \sqrt[]{1-\frac{x^2}{a^2}} y=b1a2x2
    let x = a sin ⁡ θ x=a\sin\theta x=asinθ then y = b cos ⁡ θ y=b\cos\theta y=bcosθ , d x = a cos ⁡ θ d θ dx=a\cos\theta d\theta dx=acosθdθ
    since − a < x < a -a<x<a a<x<a so − π / 2 < θ < − π / 2 -π/2 < θ < -π/2 π/2<θ<π/2

    A = ∫ − a a 2 y   d x A=\int_{-a}^{a} 2y\, dx A=aa2ydx
    = ∫ − π / 2 π / 2 2 a b cos ⁡ 2 θ   d θ =\int_{-π/2}^{π/2} 2ab\cos^2θ\, dθ =π/2π/22abcos2θdθ
    = a b [ 1 2 sin ⁡ 2 θ + θ ] − π / 2 π / 2 =ab[\frac{1}{2}\sin2θ+θ]_{-π/2}^{π/2} =ab[21sin2θ+θ]π/2π/2
    = π a b =πab =πab

  2. Change of vareables in multiple Integrals and polar coordinates

    let u = x / a , v = y / b u=x/a, v=y/b u=x/a,v=y/b, we have x = a u , y = b v x=au, y=bv x=au,y=bv and u 2 + v 2 = 1 u^2+v^2=1 u2+v2=1

    The Jacobian of the transformation T is
    ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ ( x ) ∂ ( u ) ∂ ( x ) ∂ ( v ) ∂ ( y ) ∂ ( u ) ∂ ( y ) ∂ ( v ) ∣ = ∣ a 0 b 0 ∣ = a b \frac{\partial (x,y)}{\partial (u,v)}= \left| \begin{matrix} \frac{\partial (x)}{\partial (u)} & \frac{\partial (x)}{\partial (v)} \\ \frac{\partial (y)}{\partial (u)} & \frac{\partial (y)}{\partial (v)} \end{matrix} \right|= \left| \begin{matrix} a & 0 \\ b & 0 \end{matrix} \right|=ab (u,v)(x,y)=(u)(x)(u)(y)(v)(x)(v)(y)=ab00=ab

    A = ∬ R d A = ∬ S ∣ ∂ ( x , y ) ∂ ( u , v ) ∣   d u   d v = ∬ S a b   d u   d v A=\iint_{R}dA=\iint_{S} |\frac{\partial (x,y)}{\partial (u,v)}| \,du\,dv=\iint_{S} ab \,du\,dv A=RdA=S(u,v)(x,y)dudv=Sabdudv

    let u = r cos ⁡ θ u = r\cos\theta u=rcosθ and v = r sin ⁡ θ v=r\sin\theta v=rsinθ, then
    A = ∬ S a b   d u   d v = ∫ 0 2 π ∫ 0 1 a b r   d r   d θ = π a b A=\iint_{S} ab \,du\,dv=\int_{0}^{2\pi}\int_0^1 abr\,dr\,d\theta=\pi ab A=Sabdudv=02π01abrdrdθ=πab

  3. Green’s Theorem

    The Green’s Theorem gives the following formulas for the area of D:
    A = ∮ C x   d y = ∮ C y   d x = 1 2 ∮ C x   d y − y   d x A=\oint_C x \,dy=\oint_C y \,dx=\frac{1}{2} \oint_C x \,dy-y \,dx A=Cxdy=Cydx=21Cxdyydx

    The ellipse has parametric equations x = a cos ⁡ t x = a \cos t x=acost and y = b sin ⁡ t y = b \sin t y=bsint, where 0 < t < 2 0 < t < 2 0<t<2. Using the third formula in Equation, we have
    A = 1 2 ∮ C x   d y − y   d x A=\frac{1}{2} \oint_C x \,dy-y \,dx A=21Cxdyydx
    = 1 2 ∫ 0 2 π ( a cos ⁡ t ) ( b cos ⁡ t ) d t − ( b sin ⁡ t ) ( − a sin ⁡ t ) d t =\frac{1}{2} \int_0^{2\pi}(a \cos t)(b \cos t) dt - (b \sin t)(-a \sin t) dt =2102π(acost)(bcost)dt(bsint)(asint)dt
    = a b 2 ∫ 0 2 π d t = π a b =\frac{ab}{2} \int_0^{2\pi} dt=πab =2ab02πdt=πab

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值