#include<iostream>
#include<vector>
#include<map>
#include <algorithm>
using namespace::std;
#include <algorithm>
class Solution {
public:
void getsum(vector<int> & cands, int target, int start, vector<vector<int> > &results, vector<int> path){
if(target == 0){ // found the sum
results.push_back(path);
return;
}
if(start >= cands.size() || target < 0) return; //reach the end of candidates
if(cands[start] > target)
//getsum(cands, target, start+1, results, path); //skip this element
return;
else{
// exclude cands[start] or any following elements of equal value
int pre = -1;
//while(cands[start+k] == cands[start]) k++;
//getsum(cands,target,start+k,results, path);
// include cands[start]
for(int i = start; i < cands.size(); i++)
{
if(cands[i] != pre)
{
path.push_back(cands[i]);
getsum(cands,target-cands[i],i+1,results,path);
pre = path.back();
path.pop_back();
}
}
}
}
vector<vector<int> > combinationSum2(vector<int> &candidates, int target) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
vector<vector<int> > results;
vector<int> path;
sort(candidates.begin(),candidates.end());
getsum(candidates,target,0,results,path);
return results;
}
};
int main()
{
vector<int> input;
input.push_back(1);
input.push_back(1);
input.push_back(10);
Solution ss;
vector<vector<int> > result = ss.combinationSum2(input, 2);
for(int i = 0; i < result.size(); i++)
{
for(int j = 0; j < result[i].size(); j++)
{
cout<<result[i][j];
}
cout<<endl;
}
}
Solve this problem using DFS
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5
and
target 8
,
A solution set is:
[1,
7]
[1,
2, 5]
[2,
6]
[1,
1, 6]
Round 2:
class Solution {
public:
vector<vector<int> > combinationSum2(vector<int> &num, int target) {
vector<vector<int> > result;
if(num.empty())
return result;
vector<int> cur;
std::sort(num.begin(), num.end());
int sum = 0;
dfs(num, target, result, cur, sum, 0);
return result;
}
private:
void dfs(vector<int> &candidates, int target, vector<vector<int> > &result, vector<int> &cur, int &sum, int index)
{
if(sum > target)
return;
if(sum == target)
{
result.push_back(cur);
return;
}
int pre = -1;
for(int i = index; i < candidates.size(); i++)
{
if(sum + candidates[i] > target)
break;
if(candidates[i] == pre)
continue;
cur.push_back(candidates[i]);
sum += candidates[i];
dfs(candidates, target, result, cur, sum, i+1);
sum -= candidates[i];
pre = cur.back();
cur.pop_back();
}
}
};