激光炸弹和Gundam Unicorn是二维前缀和和二位差分的综合应用。
首先是一二维差分,前缀和的模板前缀和与差分 图文并茂 超级详细整理(全网最通俗易懂)_林深不见鹿 的博客-优快云博客_前缀和与差分
1.一维前缀和,求某个区间内几个数的和
#include<iostream>
#include<algorithm>
using namespace std;
int a[101];
int n;
int s[101];
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
s[i] = s[i - 1] + a[i];
}
for (int i = 1; i <= n; i++)
{
cout << s[i] << " ";
}
return 0;
}
2.一维差分,让某个区间都加上一个常数
#include<iostream>
#include<algorithm>
using namespace std;
int n, m, l, r, c;
int a[100001];
int b[100001];
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
b[i] = a[i] - a[i - 1];
}
while (m--)
{
cin >> l >> r >> c;
b[l] += c;
b[r + 1] -= c;
}
for (int i = 1; i <= n; i++)
{
a[i] = a[i - 1] + b[i];
cout << a[i] << " ";
}
return 0;
}
3.二维前缀和,求矩阵的某个子矩阵中元素的和
#include<iostream>
using namespace std;
const int N = 1010;
long long a[N][N];
int main()
{
int n, m, q;
//cin>>n>>m>>q;
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
{
//cin>>a[i][j];
scanf("%lld", &a[i][j]);
a[i][j] += a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];
}
while (q--)
{
int x1, x2, y1, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
printf("%lld", a[x2][y2] - a[x2][y1 - 1] - a[x1 - 1][y2] + a[x1 - 1][y1 - 1]);
if (q != 0) printf("\n");
}
return 0;
}
具体是为什么这样写,可以搜一下原理图
4.二维差分,让矩阵的某个子矩阵中元素都加上一个常数
#include<iostream>
using namespace std;
const int N=1010;
long long a[N][N];
long long s[N][N];
int main()
{
int n,m,q;
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lld",&a[i][j]);
while(q--)
{
int x1,x2,y1,y2,c;
scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&c);
s[x1][y1]+=c;
s[x1][y2+1]-=c;
s[x2+1][y1]-=c;
s[x2+1][y2+1]+=c;//理解见下图
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1];
printf("%lld ",a[i][j]+s[i][j]);
}
if(i!=n) printf("\n");
}
return 0;
}
1.激光炸弹:
#include <algorithm>
#include <iostream>
using namespace std;
const int N = 5e3 + 10; //不能开 1e5+10, 内存限制比较严格
int s[N][N];
int n, r;
int main() {
cin >> n >> r;
for (int i = 0; i < n; i++) {
int x, y, w;
cin >> x >> y >> w;
// s[++x][++y]=w; //错误
s[++x][++y] += w; //右移一位, 就不需要考虑边界了, 并且必须是+=, 不能是=, 因为1个位置可能有多个目标
}
for (int i = 1; i <= 5001; i++) {
for (int j = 1; j <= 5001; j++) {
// s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + s[i][j];
s[i][j] += s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
}
}
int ans = 0;
for (int x1 = 1; x1 <= 5001; x1++) {
for (int y1 = 1;y1 <= 5001; y1++) {
int x2 = min(x1 + r - 1, 5001);
int y2 = min(y1 + r - 1, 5001);//处理的最好的就是这个地方了,正好能够保证矩形的子矩阵
ans = max(ans, s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1-1][y1 - 1]);
}
}
cout << ans << endl;
return 0;
}
2.Gundam Unicorn
WeJudge - 基于实时评测的实践教学辅助平台 (bnuz.edu.cn)
#include<iostream>
using namespace std;
int main()
{
int n, m;
int w, h;
while (scanf_s("%d%d", &n, &m) != EOF) {//题目要求输入EOF才结束
int ai[35][35];
int bi[35][35];
int ans = 0;
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
cin >> ai[i][j];
}
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
bi[i][j] = ai[i][j] + bi[i - 1][j] + bi[i][j - 1] - bi[i - 1][j - 1];
}
}
cin >> w >> h;
for (int x1 = 1; x1 <= m; x1++) {
for (int y1 = 1; y1 <= n; y1++) {
int x2 = min(x1 + h - 1, m);
int y2 = min(y1 + w - 1, n);//和上一道题目一样,巧妙的避免了越界的问题
ans = max(ans, bi[x2][y2] - bi[x2][y1 - 1] - bi[x1 - 1][y2] + bi[x1 - 1][y1 - 1]);
}
}
cout << ans << endl;
}
return 0;
}