HNU 编译系统 作业2(3)

题目3(续)

(3)(a|b)*a(a|b)(a|b)(a|b)
e -> (a|b)*a(a|b)(a|b)(a|b)
![[Blank diagram (23).png]]

利用子集构造算法将NFA转为DFA:
初始状态:{s0}:q0{q0}→ε{s0,s1,s2,s4,s7,s8}:q0{q0}→a{s3,s9}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13}:q1{q0}→b{s5}→ε{s1,s2,s4,s5,s6,s7,s8}:q2{q1}→a{s3,s9,s12}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s18}:q3{q1}→b{s5,s14}→ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18}:q4{q2}→a{s3,s9}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13}:q1{q2}→b{s5}→ε{s1,s2,s4,s5,s6,s7,s8}:q2{q3}→a{s3,s9,s12,s17}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s17,s18,s20,s21,s23}:q5{q3}→b{s5,s14,s19}→ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18,s19,s20,s21,s23}:q6{q4}→a{s3,s9,s17}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13,s17,s20,s21,s23}:q7{q4}→b{s5,s19}→ε{s1,s2,s4,s5,s6,s7,s8,s19,s20,s21,s23}:q8{q5}→a{s3,s9,s12,s17,s22}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s17,s18,s20,s21,s22,s23,s25}:q9{q5}→b{s5,s14,s19,s24}→ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18,s19,s20,s21,s23,s24,s25}:q10{q6}→a{s3,s9,s17,s22}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13,s17,s20,s21,s22,s23,s25}:q11{q6}→b{s5,s19,s24}→ε{s1,s2,s4,s5,s6,s7,s8,s19,s20,s21,s23,s24,s25}:q12{q7}→a{s3,s9,s12,s22}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s18,s22,s25}:q13{q7}→b{s5,s14,s24}→ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18,s24,s25}:q14{q8}→a{s3,s9,s22}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13,s22,s25}:q15{q8}→b{s5,s24}→ε{s1,s2,s4,s5,s6,s7,s8,s24,s25}:q16{q9}→a{s3,s9,s12,s17,s22}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s17,s18,s20,s21,s22,s23,s25}:q9{q9}→b{s5,s14,s19,s24}→ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18,s19,s20,s21,s23,s24,s25}:q10{q10}→a{s3,s9,s17,s22}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13,s17,s20,s21,s22,s23,s25}:q11{q10}→b{s5,s19,s24}→ε{s1,s2,s4,s5,s6,s7,s8,s19,s20,s21,s23,s24,s25}:q12{q11}→a{s3,s9,s12,s22}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s18,s22,s25}:q13{q11}→b{s5,s14,s24}→ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18,s24,s25}:q14{q12}→a{s3,s9,s22}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13,s22,s25}:q15{q12}→b{s5,s24}→ε{s1,s2,s4,s5,s6,s7,s8,s24,s25}:q16{q13}→a{s3,s9,s12,s17}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s17,s18,s20,s21,s23}:q5{q13}→b{s5,s14,s19}→ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18,s19,s20,s21,s23}:q6{q14}→a{s3,s9,s17}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13,s17,s20,s21,s23}:q7{q14}→b{s5,s19}→ε{s1,s2,s4,s5,s6,s7,s8,s19,s20,s21,s23}:q8{q15}→a{s3,s9,s12}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s18}:q3{q15}→b{s5,s14}→ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18}:q4{q16}→a{s3,s9}→ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13}:q1{q16}→b{s5}→ε{s1,s2,s4,s5,s6,s7,s8}:q2 \begin{aligned} &初始状态:\{s_0\}:q_0\\ &\{q_0\}\xrightarrow{ε}\{s_0, s_1, s_2, s_4, s_7, s_8\}:q_0\\ &\{q_0\}\xrightarrow{a}\{s_3, s_9\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{13}\}:q_1\\ &\{q_0\}\xrightarrow{b}\{s_5\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8\}:q_2\\ &\{q_1\}\xrightarrow{a}\{s_3, s_9, s_{12}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{15}, s_{16}, s_{18}\}:q_3\\ &\{q_1\}\xrightarrow{b}\{s_5, s_{14}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{14}, s_{15}, s_{16}, s_{18}\}:q_4\\ &\{q_2\}\xrightarrow{a}\{s_3, s_9\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{13}\}:q_1\\ &\{q_2\}\xrightarrow{b}\{s_5\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8\}:q_2\\ &\{q_3\}\xrightarrow{a}\{s_3, s_9, s_{12}, s_{17}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{15}, s_{16}, s_{17}, s_{18}, s_{20}, s_{21}, s_{23}\}:q_5\\ &\{q_3\}\xrightarrow{b}\{s_5, s_{14}, s_{19}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{14}, s_{15}, s_{16}, s_{18}, s_{19}, s_{20}, s_{21}, s_{23}\}:q_6\\ &\{q_4\}\xrightarrow{a}\{s_3, s_9, s_{17}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{13}, s_{17}, s_{20}, s_{21}, s_{23}\}:q_7\\ &\{q_4\}\xrightarrow{b}\{s_5, s_{19}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{19}, s_{20}, s_{21}, s_{23}\}:q_8\\ &\{q_5\}\xrightarrow{a}\{s_3, s_9, s_{12}, s_{17}, s_{22}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{15}, s_{16}, s_{17}, s_{18}, s_{20}, s_{21}, s_{22}, s_{23}, s_{25}\}:q_9\\ &\{q_5\}\xrightarrow{b}\{s_5, s_{14}, s_{19}, s_{24}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{14}, s_{15}, s_{16}, s_{18}, s_{19}, s_{20}, s_{21}, s_{23}, s_{24}, s_{25}\}:q_{10}\\ &\{q_6\}\xrightarrow{a}\{s_3, s_9, s_{17}, s_{22}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{13}, s_{17}, s_{20}, s_{21}, s_{22}, s_{23}, s_{25}\}:q_{11}\\ &\{q_6\}\xrightarrow{b}\{s_5, s_{19}, s_{24}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{19}, s_{20}, s_{21}, s_{23}, s_{24}, s_{25}\}:q_{12}\\ &\{q_7\}\xrightarrow{a}\{s_3, s_9, s_{12}, s_{22}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{15}, s_{16}, s_{18}, s_{22}, s_{25}\}:q_{13}\\ &\{q_7\}\xrightarrow{b}\{s_5, s_{14}, s_{24}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{14}, s_{15}, s_{16}, s_{18}, s_{24}, s_{25}\}: q_{14}\\ &\{q_8\}\xrightarrow{a}\{s_3, s_9, s_{22}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{13}, s_{22}, s_{25}\}:q_{15}\\ &\{q_8\}\xrightarrow{b}\{s_5, s_{24}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{24}, s_{25}\}:q_{16}\\ &\{q_9\}\xrightarrow{a}\{s_3, s_9, s_{12}, s_{17}, s_{22}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{15}, s_{16}, s_{17}, s_{18}, s_{20}, s_{21}, s_{22}, s_{23}, s_{25}\}:q_9\\ &\{q_9\}\xrightarrow{b}\{s_5, s_{14}, s_{19}, s_{24}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{14}, s_{15}, s_{16}, s_{18}, s_{19}, s_{20}, s_{21}, s_{23}, s_{24}, s_{25}\}:q_{10}\\ &\{q_{10}\}\xrightarrow{a}\{s_3, s_9, s_{17}, s_{22}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{13}, s_{17}, s_{20}, s_{21}, s_{22}, s_{23}, s_{25}\}:q_{11}\\ &\{q_{10}\}\xrightarrow{b}\{s_5, s_{19}, s_{24}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{19}, s_{20}, s_{21}, s_{23}, s_{24}, s_{25}\}:q_{12}\\ &\{q_{11}\}\xrightarrow{a}\{s_3, s_9, s_{12}, s_{22}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{15}, s_{16}, s_{18}, s_{22}, s_{25}\}:q_{13}\\ &\{q_{11}\}\xrightarrow{b}\{s_5, s_{14}, s_{24}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{14}, s_{15}, s_{16}, s_{18}, s_{24}, s_{25}\}: q_{14}\\ &\{q_{12}\}\xrightarrow{a}\{s_3, s_9, s_{22}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{13}, s_{22}, s_{25}\}:q_{15}\\ &\{q_{12}\}\xrightarrow{b}\{s_5, s_{24}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{24}, s_{25}\}:q_{16}\\ &\{q_{13}\}\xrightarrow{a}\{s_3, s_9, s_{12}, s_{17}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{15}, s_{16}, s_{17}, s_{18}, s_{20}, s_{21}, s_{23}\}:q_5\\ &\{q_{13}\}\xrightarrow{b}\{s_5, s_{14}, s_{19}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{14}, s_{15}, s_{16}, s_{18}, s_{19}, s_{20}, s_{21}, s_{23}\}:q_6\\ &\{q_{14}\}\xrightarrow{a}\{s_3, s_9, s_{17}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{13}, s_{17}, s_{20}, s_{21}, s_{23}\}:q_7\\ &\{q_{14}\}\xrightarrow{b}\{s_5, s_{19}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{19}, s_{20}, s_{21}, s_{23}\}:q_8\\ &\{q_{15}\}\xrightarrow{a}\{s_3, s_9, s_{12}\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{12}, s_{13}, s_{15}, s_{16}, s_{18}\}:q_3\\ &\{q_{15}\}\xrightarrow{b}\{s_5, s_{14}\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8, s_{14}, s_{15}, s_{16}, s_{18}\}:q_4\\ &\{q_{16}\}\xrightarrow{a}\{s_3, s_9\}\xrightarrow{ε}\{s_1, s_2, s_3, s_4, s_6, s_7, s_8, s_9, s_{10}, s_{11}, s_{13}\}:q_1\\ &\{q_{16}\}\xrightarrow{b}\{s_5\}\xrightarrow{ε}\{s_1, s_2, s_4, s_5, s_6, s_7, s_8\}:q_2 \end{aligned} 初始状态:{s0}:q0{q0}ε{s0,s1,s2,s4,s7,s8}:q0{q0}a{s3,s9}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13}:q1{q0}b{s5}ε{s1,s2,s4,s5,s6,s7,s8}:q2{q1}a{s3,s9,s12}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s18}:q3{q1}b{s5,s14}ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18}:q4{q2}a{s3,s9}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13}:q1{q2}b{s5}ε{s1,s2,s4,s5,s6,s7,s8}:q2{q3}a{s3,s9,s12,s17}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s17,s18,s20,s21,s23}:q5{q3}b{s5,s14,s19}ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18,s19,s20,s21,s23}:q6{q4}a{s3,s9,s17}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13,s17,s20,s21,s23}:q7{q4}b{s5,s19}ε{s1,s2,s4,s5,s6,s7,s8,s19,s20,s21,s23}:q8{q5}a{s3,s9,s12,s17,s22}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s17,s18,s20,s21,s22,s23,s25}:q9{q5}b{s5,s14,s19,s24}ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18,s19,s20,s21,s23,s24,s25}:q10{q6}a{s3,s9,s17,s22}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13,s17,s20,s21,s22,s23,s25}:q11{q6}b{s5,s19,s24}ε{s1,s2,s4,s5,s6,s7,s8,s19,s20,s21,s23,s24,s25}:q12{q7}a{s3,s9,s12,s22}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s18,s22,s25}:q13{q7}b{s5,s14,s24}ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18,s24,s25}:q14{q8}a{s3,s9,s22}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13,s22,s25}:q15{q8}b{s5,s24}ε{s1,s2,s4,s5,s6,s7,s8,s24,s25}:q16{q9}a{s3,s9,s12,s17,s22}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s17,s18,s20,s21,s22,s23,s25}:q9{q9}b{s5,s14,s19,s24}ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18,s19,s20,s21,s23,s24,s25}:q10{q10}a{s3,s9,s17,s22}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13,s17,s20,s21,s22,s23,s25}:q11{q10}b{s5,s19,s24}ε{s1,s2,s4,s5,s6,s7,s8,s19,s20,s21,s23,s24,s25}:q12{q11}a{s3,s9,s12,s22}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s18,s22,s25}:q13{q11}b{s5,s14,s24}ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18,s24,s25}:q14{q12}a{s3,s9,s22}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13,s22,s25}:q15{q12}b{s5,s24}ε{s1,s2,s4,s5,s6,s7,s8,s24,s25}:q16{q13}a{s3,s9,s12,s17}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s17,s18,s20,s21,s23}:q5{q13}b{s5,s14,s19}ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18,s19,s20,s21,s23}:q6{q14}a{s3,s9,s17}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13,s17,s20,s21,s23}:q7{q14}b{s5,s19}ε{s1,s2,s4,s5,s6,s7,s8,s19,s20,s21,s23}:q8{q15}a{s3,s9,s12}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s12,s13,s15,s16,s18}:q3{q15}b{s5,s14}ε{s1,s2,s4,s5,s6,s7,s8,s14,s15,s16,s18}:q4{q16}a{s3,s9}ε{s1,s2,s3,s4,s6,s7,s8,s9,s10,s11,s13}:q1{q16}b{s5}ε{s1,s2,s4,s5,s6,s7,s8}:q2
![[Blank diagram (25).png|600]]

将DFA简化到最小:
![[Blank diagram (24).png]]

字符a可以分裂DFA,对于N中状态:δ(q0​,a)=q1∈Nδ(q1​,a)=q3∈Nδ(q2​,a)=q1∈Nδ(q3​,a)=q5∈Nδ(q4,a)=q7∈Nδ(q5​,a)=q9∉Nδ(q6​,a)=q11∉Nδ(q7,a)=q13∉Nδ(q8,a)=q15∉N对于A中状态:δ(q9​,a)=q9∈Aδ(q10​,a)=q11∈Aδ(q11​,a)=q13∈Aδ(q12,a)=q15∈Aδ(q13​,a)=q5∉Aδ(q14​,a)=q7∉Aδ(q15​,a)=q3∉Aδ(q16,a)=q1∉A因此字符a可将原DFA分裂为{q0,q1,q2,q3,q4},{q5,q6,q7,q8},{q9,q10,q11,q12},{q13,q14,q15,q16}字符b可以继续分裂DFA:δ(q0​,b)=q2∈{q0,q1,q2,q3,q4}δ(q1​,b)=q4∈{q0,q1,q2,q3,q4}δ(q2​,b)=q2∈{q0,q1,q2,q3,q4}δ(q3​,b)=q6∈{q5,q6,q7,q8}δ(q4,b)=q8∈{q5,q6,q7,q8}δ(q5​,b)=q10∈{q9,q10,q11,q12}δ(q6​,b)=q12∈{q9,q10,q11,q12}δ(q7​,b)=q14∈{q13,q14,q15,q16}δ(q8​,b)=q16∈{q13,q14,q15,q16}δ(q9​,b)=q10∈{q9,q10,q11,q12}δ(q10​,b)=q12∈{q9,q10,q11,q12}δ(q11​,b)=q14∈{q13,q14,q15,q16}δ(q12,b)=q16∈{q13,q14,q15,q16}δ(q13​,b)=q6∈{q5,q6,q7,q8}δ(q14​,b)=q8∈{q5,q6,q7,q8}δ(q15​,b)=q4∈{q0,q1,q2,q3,q4}δ(q16,b)=q2∈{q0,q1,q2,q3,q4}因此字符b可将原DFA继续分裂为{q0,q1,q2},{q3,4},{q5,q6},{q7,q8},{q9,q10},{q11,q12},{q13,q14},{q15,q16}字符b可以继续分裂DFA:δ(q0​,b)=q2∈{q0,q1,q2}δ(q1​,b)=q4∈{q3,q4}δ(q2​,b)=q2∈{q0,q1,q2}δ(q3​,b)=q6∈{q5,q6}δ(q4,b)=q8∈{q7,q8}δ(q5​,b)=q10∈{q9,q10}δ(q6​,b)=q12∈{q11,q12}δ(q7​,b)=q14∈{q13,q14}δ(q8​,b)=q16∈{q15,q16}δ(q9​,b)=q10∈{q9,q10}δ(q10​,b)=q12∈{q11,q12}δ(q11​,b)=q14∈{q13,q14}δ(q12,b)=q16∈{q15,q16}δ(q13​,b)=q6∈{q5,q6}δ(q14​,b)=q8∈{q7,q8}δ(q15​,b)=q4∈{q3,q4}δ(q16,b)=q2∈{q0,q1,q2}因此字符b可将原DFA继续分裂为{q0,q2},{q1},{q3},{q4},{q5},{q6},{q7},{q8},{q9},{q10},{q11},{q12},{q13},{q14},{q15},{q16}此后字符a和b都不能继续分裂DFA。因此最简的DFA: \begin{aligned} &字符a可以分裂DFA,对于N中状态:\\ &δ(q_0​,a)=q_1 \in N \\ &δ(q_1​,a)=q_3 \in N \\ &δ(q_2​,a)=q_1 \in N \\ &δ(q_3​,a)=q_5 \in N \\ &δ(q_4,a)=q_7 \in N \\ &δ(q_5​,a)=q_9 \notin N \\ &δ(q_6​,a)=q_{11} \notin N \\ &δ(q_7,a)=q_{13} \notin N \\ &δ(q_8,a)=q_{15} \notin N \\ &对于A中状态:\\ &δ(q_{9}​,a)=q_{9} \in A \\ &δ(q_{10}​,a)=q_{11} \in A \\ &δ(q_{11}​,a)=q_{13} \in A \\ &δ(q_{12},a)=q_{15} \in A \\ &δ(q_{13}​,a)=q_{5} \notin A \\ &δ(q_{14}​,a)=q_{7} \notin A \\ &δ(q_{15}​,a)=q_{3} \notin A \\ &δ(q_{16},a)=q_{1} \notin A \\ &因此字符a可将原DFA分裂为\{q_0, q_1, q_2, q_3, q_4\}, \{q_5, q_6, q_7, q_8\}, \{q_9, q_{10}, q_{11}, q_{12}\}, \{q_{13}, q_{14}, q_{15}, q_{16}\}\\ &字符b可以继续分裂DFA:\\ &δ(q_0​,b)=q_2 \in \{q_0, q_1, q_2, q_3, q_4\} \\ &δ(q_1​,b)=q_4 \in \{q_0, q_1, q_2, q_3, q_4\} \\ &δ(q_2​,b)=q_2 \in \{q_0, q_1, q_2, q_3, q_4\} \\ &δ(q_3​,b)=q_6 \in \{q_5, q_6, q_7, q_8\} \\ &δ(q_4,b)=q_8 \in \{q_5, q_6, q_7, q_8\} \\ &δ(q_5​,b)=q_{10} \in \{q_9, q_{10}, q_{11}, q_{12}\} \\ &δ(q_6​,b)=q_{12} \in \{q_9, q_{10}, q_{11}, q_{12}\} \\ &δ(q_7​,b)=q_{14} \in \{q_{13}, q_{14}, q_{15}, q_{16}\} \\ &δ(q_8​,b)=q_{16} \in \{q_{13}, q_{14}, q_{15}, q_{16}\} \\ &δ(q_{9}​,b)=q_{10} \in \{q_9, q_{10}, q_{11}, q_{12}\} \\ &δ(q_{10}​,b)=q_{12} \in \{q_9, q_{10}, q_{11}, q_{12}\} \\ &δ(q_{11}​,b)=q_{14} \in \{q_{13}, q_{14}, q_{15}, q_{16}\} \\ &δ(q_{12},b)=q_{16} \in \{q_{13}, q_{14}, q_{15}, q_{16}\} \\ &δ(q_{13}​,b)=q_6 \in \{q_5, q_6, q_7, q_8\} \\ &δ(q_{14}​,b)=q_8 \in \{q_5, q_6, q_7, q_8\} \\ &δ(q_{15}​,b)=q_4 \in \{q_0, q_1, q_2, q_3, q_4\} \\ &δ(q_{16},b)=q_2 \in \{q_0, q_1, q_2, q_3, q_4\} \\ &因此字符b可将原DFA继续分裂为\{q_0, q_1, q_2\}, \{q_3, _4\}, \{q_5, q_6\}, \{q_7, q_8\}, \{q_9, q_{10}\}, \{q_{11}, q_{12}\}, \{q_{13}, q_{14}\}, \{q_{15}, q_{16}\}\\ &字符b可以继续分裂DFA:\\ &δ(q_0​,b)=q_2 \in \{q_0, q_1, q_2\} \\ &δ(q_1​,b)=q_4 \in \{q_3, q_4\} \\ &δ(q_2​,b)=q_2 \in \{q_0, q_1, q_2\} \\ &δ(q_3​,b)=q_6 \in \{q_5, q_6\} \\ &δ(q_4,b)=q_8 \in \{q_7, q_8\} \\ &δ(q_5​,b)=q_{10} \in \{q_9, q_{10}\} \\ &δ(q_6​,b)=q_{12} \in \{q_{11}, q_{12}\} \\ &δ(q_7​,b)=q_{14} \in \{q_{13}, q_{14}\} \\ &δ(q_8​,b)=q_{16} \in \{q_{15}, q_{16}\} \\ &δ(q_{9}​,b)=q_{10} \in \{q_9, q_{10}\} \\ &δ(q_{10}​,b)=q_{12} \in \{q_{11}, q_{12}\} \\ &δ(q_{11}​,b)=q_{14} \in \{q_{13}, q_{14}\} \\ &δ(q_{12},b)=q_{16} \in \{q_{15}, q_{16}\} \\ &δ(q_{13}​,b)=q_6 \in \{q_5, q_6\} \\ &δ(q_{14}​,b)=q_8 \in \{q_7, q_8\} \\ &δ(q_{15}​,b)=q_4 \in \{q_3, q_4\} \\ &δ(q_{16},b)=q_2 \in \{q_0, q_1, q_2\} \\ &因此字符b可将原DFA继续分裂为\{q_0, q_2\}, \{q_1\}, \{q_3\}, \{q_4\}, \{q_5\}, \{q_6\}, \{q_7\}, \{q_8\}, \{q_9\}, \{q_{10}\}, \{q_{11}\}, \{q_{12}\}, \{q_{13}\}, \{q_{14}\}, \{q_{15}\}, \{q_{16}\}\\ &此后字符a和b都不能继续分裂DFA。因此最简的DFA: \end{aligned} 字符a可以分裂DFA,对于N中状态:δ(q0,a)=q1Nδ(q1,a)=q3Nδ(q2,a)=q1Nδ(q3,a)=q5Nδ(q4,a)=q7Nδ(q5,a)=q9/Nδ(q6,a)=q11/Nδ(q7,a)=q13/Nδ(q8,a)=q15/N对于A中状态:δ(q9,a)=q9Aδ(q10,a)=q11Aδ(q11,a)=q13Aδ(q12,a)=q15Aδ(q13,a)=q5/Aδ(q14,a)=q7/Aδ(q15,a)=q3/Aδ(q16,a)=q1/A因此字符a可将原DFA分裂为{q0,q1,q2,q3,q4},{q5,q6,q7,q8},{q9,q10,q11,q12},{q13,q14,q15,q16}字符b可以继续分裂DFAδ(q0,b)=q2{q0,q1,q2,q3,q4}δ(q1,b)=q4{q0,q1,q2,q3,q4}δ(q2,b)=q2{q0,q1,q2,q3,q4}δ(q3,b)=q6{q5,q6,q7,q8}δ(q4,b)=q8{q5,q6,q7,q8}δ(q5,b)=q10{q9,q10,q11,q12}δ(q6,b)=q12{q9,q10,q11,q12}δ(q7,b)=q14{q13,q14,q15,q16}δ(q8,b)=q16{q13,q14,q15,q16}δ(q9,b)=q10{q9,q10,q11,q12}δ(q10,b)=q12{q9,q10,q11,q12}δ(q11,b)=q14{q13,q14,q15,q16}δ(q12,b)=q16{q13,q14,q15,q16}δ(q13,b)=q6{q5,q6,q7,q8}δ(q14,b)=q8{q5,q6,q7,q8}δ(q15,b)=q4{q0,q1,q2,q3,q4}δ(q16,b)=q2{q0,q1,q2,q3,q4}因此字符b可将原DFA继续分裂为{q0,q1,q2},{q3,4},{q5,q6},{q7,q8},{q9,q10},{q11,q12},{q13,q14},{q15,q16}字符b可以继续分裂DFAδ(q0,b)=q2{q0,q1,q2}δ(q1,b)=q4{q3,q4}δ(q2,b)=q2{q0,q1,q2}δ(q3,b)=q6{q5,q6}δ(q4,b)=q8{q7,q8}δ(q5,b)=q10{q9,q10}δ(q6,b)=q12{q11,q12}δ(q7,b)=q14{q13,q14}δ(q8,b)=q16{q15,q16}δ(q9,b)=q10{q9,q10}δ(q10,b)=q12{q11,q12}δ(q11,b)=q14{q13,q14}δ(q12,b)=q16{q15,q16}δ(q13,b)=q6{q5,q6}δ(q14,b)=q8{q7,q8}δ(q15,b)=q4{q3,q4}δ(q16,b)=q2{q0,q1,q2}因此字符b可将原DFA继续分裂为{q0,q2},{q1},{q3},{q4},{q5},{q6},{q7},{q8},{q9},{q10},{q11},{q12},{q13},{q14},{q15},{q16}此后字符ab都不能继续分裂DFA。因此最简的DFA
![[Blank diagram (26).png]]

题目4

写出下列语言的正则定义。
(1)仅由a和b这2个字符组成的字符串,其中a后面必跟b。
(b|ab)*

(2)仅由a和b这2个字符组成的字符串,其中a和b出现的次数都为偶数次。
(aa|bb|(ab|ba)(aa|bb)*(ab|ba))*

  • 每次匹配要么是 aa/bb(不改变奇偶性)
  • 要么是成对的 (ab|ba)...(ab|ba)(净变化为偶数次),中间...处可插入任意偶数长度片段aa/bb
  • 最外层的 *允许重复匹配这些模式
  • 最终保证整个字符串中 ab都出现偶数次

(3)仅由a和b这2个字符组成的字符串,其中不含子串abb。
b*(aa*b)*a*

  • b*​:匹配任意数量的b(包括0个)
  • (aa*b)*​:匹配0个或多个"a序列+b"的块
    • aa*b= 至少一个a后跟一个b,例如:ab, aab, aaab
  • a*​​:匹配任意数量的a(包括0个)
基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值