D. Distance in Tree

给定一棵树和一个正整数k,求树中距离为k的节点对的数量。题目要求输出不同节点对的数量,注意排列与组合的区别。可以通过树形动态规划解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A tree is a connected graph that doesn't contain any cycles.

The distance between two vertices of a tree is the length (in edges) of the shortest path between these vertices.

You are given a tree with n vertices and a positive number k. Find the number of distinct pairs of the vertices which have a distance of exactly k between them. Note that pairs (vu) and (uv) are considered to be the same pair.

Input

The first line contains two integers n and k (1 ≤ n ≤ 50000, 1 ≤ k ≤ 500) — the number of vertices and the required distance between the vertices.

Next n - 1 lines describe the edges as "ai bi" (without the quotes) (1 ≤ ai, bi ≤ nai ≠ bi), where ai and bi are the vertices connected by the i-th edge. All given edges are different.

Output

Print a single integer — the number of distinct pairs of the tree's vertices which have a distance of exactly k between them.

Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64dspecifier.

Examples

input

Copy

5 2
1 2
2 3
3 4
2 5

output

Copy

4

input

Copy

5 3
1 2
2 3
3 4
4 5

output

Copy

2

Note

In the first sample the pairs of vertexes at distance 2 from each other are (1, 3), (1, 5), (3, 5) and (2, 4).

题意:

给你一棵树,要你求顶点之间距离为k的有多少对,求的是组合,不是排列。

思路:

树型dp,设计状态,为dp[u][j],以u为起点的长度为j的顶点个数。

代码:

#include<bits/stdc++.h>
#define LL long long

using namespace std;
const int maxn=5e4+100;
const int maxm=600;
LL ans;
struct node
{
    int to,Next;
};
node Edge[2*maxn];
int Head[maxn];
int cnt;
int dp[maxn][maxm];
void add(int u,int v)
{
    Edge[++cnt].to=v;
    Edge[cnt].Next=Head[u];
    Head[u]=cnt;
    return ;
}
void dfs(int u,int fa,int k)
{
    dp[u][0]=1;
    for(int i=1;i<=k;i++)
    {
        dp[u][i]=0;
    }
    for(int i=Head[u];i!=-1;i=Edge[i].Next)
    {
        int v=Edge[i].to;
        if(v==fa)
        {
            continue;
        }
        dfs(v,u,k);
        for(int j=0;j<k;j++)
        {
            ans+=dp[u][j]*dp[v][k-j-1];
        }
        for(int j=1;j<=k;j++)
        {
            dp[u][j]+=dp[v][j-1];
        }
    }
    return;
}
int main()
{
    memset(Head,-1,sizeof(Head));
    int n,k;
    cin>>n>>k;
    for(int i=1;i<n;i++)
    {
        int u,v;
        cin>>u>>v;
        add(u,v);
        add(v,u);
    }
    dfs(1,0,k);
    cout<<ans<<endl;
    return 0;
}

反思:这种树上计数的题总能想到大概的思路,但总是写不出要好好练习一下。

import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D class Node3D: def __init__(self, x, y, z, cost=0, parent=None): self.x = x self.y = y self.z = z self.cost = cost self.parent = parent def __str__(self): return f'Node(x={self.x}, y={self.y}, z={self.z})' def distance(node1, node2): return np.linalg.norm(np.array([node2.x - node1.x, node2.y - node1.y, node2.z - node1.z])) def is_collision(nearest_node, new_node, obstacles): for obstacle in obstacles: nearest_node_xyz = np.array([nearest_node.x, nearest_node.y, nearest_node.z]) new_node_xyz = np.array([new_node.x, new_node.y, new_node.z]) v = nearest_node_xyz - new_node_xyz p = np.array(obstacle[:3]) - nearest_node_xyz a = np.dot(v, v) b = 2 * np.dot(v, p) c = np.dot(p, p) - obstacle[3] ** 2 disc = b ** 2 - 4 * a * c if disc >= 0: t1 = (-b + np.sqrt(disc)) / (2 * a) t2 = (-b - np.sqrt(disc)) / (2 * a) for t in [t1, t2]: if 0 <= t <= 1: return True return False class RRT3D: def __init__(self, start, goal, bounds, obstacles, max_iter=10000, step_size=1.0): self.start = Node3D(*start) self.goal = Node3D(*goal) self.bounds = bounds self.step_size = step_size self.goal_sample_rate = 0.1 self.obs = obstacles self.max_iter = max_iter self.start_tree = [self.start] self.goal_tree = [self.goal] self.path = None def plan(self): for i in range(self.max_iter): start_rnd = self.get_random_node() n_start_nearest = self.get_nearest_node(self.start_tree, start_rnd) n_start_new = self.steer(n_start_nearest, start_rnd) if n_start_new and not is_collision(n_start_nearest, n_start_new, self.obs): self.start_tree.append(
最新发布
03-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值