B. Working out

本文介绍了一种基于矩阵的最优路径规划算法,适用于两个人从不同起点出发,在特定条件下相遇一次并达到各自终点的问题。通过动态规划的方法,计算两人经过格子的最大价值总和。

Summer is coming! It's time for Iahub and Iahubina to work out, as they both want to look hot at the beach. The gym where they go is a matrix a with n lines and m columns. Let number a[i][j] represents the calories burned by performing workout at the cell of gym in the i-th line and the j-th column.

Iahub starts with workout located at line 1 and column 1. He needs to finish with workout a[n][m]. After finishing workout a[i][j], he can go to workout a[i + 1][j] or a[i][j + 1]. Similarly, Iahubina starts with workout a[n][1] and she needs to finish with workout a[1][m]. After finishing workout from cell a[i][j], she goes to either a[i][j + 1] or a[i - 1][j].

There is one additional condition for their training. They have to meet in exactly one cell of gym. At that cell, none of them will work out. They will talk about fast exponentiation (pretty odd small talk) and then both of them will move to the next workout.

If a workout was done by either Iahub or Iahubina, it counts as total gain. Please plan a workout for Iahub and Iahubina such as total gain to be as big as possible. Note, that Iahub and Iahubina can perform workouts with different speed, so the number of cells that they use to reach meet cell may differs.

Input

The first line of the input contains two integers n and m (3 ≤ n, m ≤ 1000). Each of the next n lines contains m integers: j-th number from i-th line denotes element a[i][j] (0 ≤ a[i][j] ≤ 105).

Output

The output contains a single number — the maximum total gain possible.

Examples

input

Copy

3 3
100 100 100
100 1 100
100 100 100

output

Copy

800

Note

Iahub will choose exercises a[1][1] → a[1][2] → a[2][2] → a[3][2] → a[3][3]. Iahubina will choose exercises a[3][1] → a[2][1] → a[2][2] → a[2][3] → a[1][3].

题意:

有个n,m的矩阵,一个从(1,1)出发到(n,m),一个从(n,1)出发到(n,m),他们方向只要两个分别不同,一个向右,向下,一个向上,向右。然后他们只能相遇一次(这个很关键),相遇的格子里的值不计算,求两人经过格子的最大值。

思路:

通过分析可知,一个人从上进入,那他必定从下面出,一个从左边进,必定从右边出。

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
const int maxn=1e3+100;
LL a[maxn][maxn];
LL dp1[maxn][maxn],dp2[maxn][maxn],dp3[maxn][maxn],dp4[maxn][maxn];
void init(int n,int m)
{
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            dp1[i][j]=max(dp1[i-1][j]+a[i][j],dp1[i][j-1]+a[i][j]);
        }
    }
    for(int i=n;i>=1;i--)
    {
        for(int j=m;j>=1;j--)
        {
            dp2[i][j]=max(dp2[i+1][j]+a[i][j],dp2[i][j+1]+a[i][j]);
        }
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=m;j>=1;j--)
        {
            dp3[i][j]=max(dp3[i-1][j]+a[i][j],dp3[i][j+1]+a[i][j]);
        }
    }
    for(int i=n;i>=1;i--)
    {
        for(int j=1;j<=m;j++)
        {
            dp4[i][j]=max(dp4[i+1][j]+a[i][j],dp4[i][j-1]+a[i][j]);
        }
    }
    return ;
}
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            cin>>a[i][j];
        }
    }
    init(n,m);
    LL ans=-1;
    for(int i=2;i<n;i++)
    {
        for(int j=2;j<m;j++)
        {
            ans=max(ans,dp1[i-1][j]+dp2[i+1][j]+dp3[i][j+1]+dp4[i][j-1]);
            ans=max(ans,dp1[i][j-1]+dp2[i][j+1]+dp3[i-1][j]+dp4[i+1][j]);
        }
    }
    cout<<ans<<endl;
    return 0;
}

 

package test_extend; /** * @author pengzheng */ class Employee { // 定义员工类 String name; int age; //[代码1] // 定义 double类型的成员变量salary,表示工资 double salary; Employee(String name, int age) { this.name = name; // [代码2] // 初始化成员变量age this.age=age; } void showInfo() { System.out.println("姓名是:" + this.name); System.out.println("年龄是:" + this.age); // [代码3] // 显示工资的信息,格式为“工资是:***” System.out.println("工资是:"+this.salary); } } class Manager extends Employee { // 定义Manager类,继承Employee类 Manager(String name, int age, double salary) { super(name, age); // 调用父类构造方法,以初始化成员变量name和age this.salary = salary; } } class Worker extends Employee //[代码4] { // 定义“工人”类Worker,继承“员工”类Employee { int workingDays; // 成员变量workingDays,表示工作天数 // [代码5] // 定义 double类型的成员变量 dailyWage,表示日薪 void setSalary(int workingDays, double dailyWage) { this.workingDays = workingDays; this.dailyWage = dailyWage; this.salary = workingDays * dailyWage; // 工资=工作天数*日薪 } Worker(String name, int age, int workingDays, double dailyWage) { //[代码6] // 调用父类构造方法,以初始化name和age super(name,age); //[代码7] // 调用成员方法setSalary,以初始化工作天数、日薪和月薪 super.setSalary(); } void showInfo() { // 覆盖override父类的showInfo()方法 //[代码8] // 调用父类被覆盖的showInfo(),以显示姓名、年龄、工资的信息 super.showInfo(); System.out.println("工作天数是:" + this.workingDays); System.out.println("日薪是:" + this.dailyWage); } } public class TestExtend { public static void main(String[] args) { Manager manager = new Manger("张三",40,10000); //[代码9] // 创建一个经理对象:张三、40岁、10000元月薪 // [代码10] // 调用manager的showInfo()方法,显示该经理的信息。 super.showInfo(); Worker worker = new Worker("李四",20,22,200); //[代码11] // 创建Worker对象:李四、20岁、月工作22天、日薪200 worker.showInfo(); } }
最新发布
03-18
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值