It is the middle of 2018 and Maria Stepanovna, who lives outside Krasnokamensk (a town in Zabaikalsky region), wants to rent three displays to highlight an important problem.
There are nn displays placed along a road, and the ii-th of them can display a text with font size sisi only. Maria Stepanovna wants to rent such three displays with indices i<j<ki<j<k that the font size increases if you move along the road in a particular direction. Namely, the condition si<sj<sksi<sj<sk should be held.
The rent cost is for the ii-th display is cici. Please determine the smallest cost Maria Stepanovna should pay.
The first line contains a single integer nn (3≤n≤30003≤n≤3000) — the number of displays.
The second line contains nn integers s1,s2,…,sns1,s2,…,sn (1≤si≤1091≤si≤109) — the font sizes on the displays in the order they stand along the road.
The third line contains nn integers c1,c2,…,cnc1,c2,…,cn (1≤ci≤1081≤ci≤108) — the rent costs for each display.
If there are no three displays that satisfy the criteria, print -1. Otherwise print a single integer — the minimum total rent cost of three displays with indices i<j<ki<j<k such that si<sj<sksi<sj<sk.
5 2 4 5 4 10 40 30 20 10 40
90
3 100 101 100 2 4 5
-1
10 1 2 3 4 5 6 7 8 9 10 10 13 11 14 15 12 13 13 18 13
33
In the first example you can, for example, choose displays 11, 44 and 55, because s1<s4<s5s1<s4<s5 (2<4<102<4<10), and the rent cost is 40+10+40=9040+10+40=90.
In the second example you can't select a valid triple of indices, so the answer is -1.
题意:给你两个n的序列要你根据第一个序列(严格单调递增的方式)在第二个序列里找3个数加起来,输出最小的一个。
思路:先从前往后枚举两个最小的。在从后往前找一个加上使其最小,最后遍历剩下的三元组。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=4000;
const int INF=4*1e9;
struct node{
int num,id;
};
struct node1{
ll h,Sum;
};
node a[maxn];
node1 sum[maxn];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++){
sum[i].Sum=INF;
}
for(int i=1;i<=n;i++){
cin>>a[i].id;
}
for(int i=1;i<=n;i++){
cin>>a[i].num;
}
ll Min=4*1e9;
for(int i=1;i<=n-1;i++){
Min=4*1e9;
for(int j=i+1;j<=n;j++){
if(a[i].id<a[j].id){
if(a[i].num+a[j].num<Min)
{
Min=a[i].num+a[j].num;
}
}
}
sum[i].Sum=Min;
sum[i].h=2;
}
//cout<<sum[2].Sum<<endl;
for(int i=n-1;i>=2;i--){
Min=4*1e9;
for(int j=i-1;j>=1;j--){
if(a[i].id>a[j].id){
if(sum[i].Sum+a[j].num<Min){
Min=sum[i].Sum+a[j].num;
}
}
}
sum[i].Sum=Min;
sum[i].h=3;
}
Min=4*1e9;
int i,k;
for( i=1;i<=n;i++){
if(Min>sum[i].Sum&&sum[i].h==3){
Min=sum[i].Sum;
k=i;
}
}
if(Min<INF){
cout<<Min<<endl;
}
else
cout<<"-1"<<endl;
return 0;
}
本文介绍了一个算法问题,即如何在给定的两组序列中找到三个元素,使得这三个元素的第一个序列呈现严格递增的趋势,并且这三个元素在第二个序列中的和最小。通过从前向后和从后向前两次遍历的方法来解决这个问题。
1170

被折叠的 条评论
为什么被折叠?



