CodeForces 843 简要题解

本文解析了五道编程挑战题目,包括子序列排序、交互式下界查找、树升级、动态最短路径及最大流问题。每道题目都提供了详细的算法思路与实现代码,覆盖了暴力求解、随机化策略、重心分解、BFS更新及网络流等核心算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. Sorting by Subsequences

暴力。

#include <bits/stdc++.h>
#define xx first
#define yy second
#define mp make_pair
#define pb push_back
#define mset(x, y) memset(x, y, sizeof x)
#define mcpy(x, y) memcpy(x, y, sizeof x)
using namespace std;

typedef long long LL;
typedef pair <int, int> pii;

inline int Read()
{
    int x = 0, f = 1, c = getchar();
    for (; !isdigit(c); c = getchar())
        if (c == '-')
            f = -1;
    for (;  isdigit(c); c = getchar())
        x = x * 10 + c - '0';
    return x * f;
}

const int MAXN = 100005;

int a[MAXN], l[MAXN], n, m;
vector <int> ans[MAXN];
bool v[MAXN];

inline void Dfs(int x)
{
    if (v[x])
        return ;
    v[x] = 1; ans[m].pb(x);
    Dfs(a[x]);
}

int main()
{
#ifdef wxh010910
    freopen("data.in", "r", stdin);
#endif
    n = Read();
    for (int i = 1; i <= n; i ++)
        a[i] = l[i] = Read();
    sort(l + 1, l + n + 1);
    for (int i = 1; i <= n; i ++)
        a[i] = lower_bound(l + 1, l + n + 1, a[i]) - l;
    for (int i = 1; i <= n; i ++)
        if (!v[i])
            m ++, Dfs(i);
    printf("%d\n", m);
    for (int i = 1; i <= m; i ++)
    {
        printf("%d", ans[i].size());
        for (auto x : ans[i])
            printf(" %d", x);
        putchar(10);
    }
}

B. Interactive LowerBound

随机化。
考虑先随机取1000个,然后从最大的小于x的那个开始暴力跳,正确性算算是对的。

include <bits/stdc++.h>
#define xx first
#define yy second
#define mp make_pair
#define pb push_back
#define mset(x, y) memset(x, y, sizeof x)
#define mcpy(x, y) memcpy(x, y, sizeof x)
using namespace std;

typedef long long LL;
typedef pair <int, int> pii;

inline int Read()
{
    int x = 0, f = 1, c = getchar();
    for (; !isdigit(c); c = getchar())
        if (c == '-')
            f = -1;
    for (;  isdigit(c); c = getchar())
        x = x * 10 + c - '0';
    return x * f;
}

const int MAXN = 50005;

int n, s, x, val[MAXN], nxt[MAXN], p[MAXN], cv = -1, cp;

inline int Query(int x)
{
    printf("? %d\n", x);
    fflush(stdout);
    val[x] = Read(), nxt[x] = Read();
}

inline void Print(int x)
{
    printf("! %d\n", x);
    fflush(stdout);
    exit(0);
}

int main()
{
#ifdef wxh010910
    //freopen("data.in", "r", stdin);
#endif
    srand(time(0));
    n = Read(), s = Read(), x = Read();
    for (int i = 1; i <= n; i ++)
        p[i] = i;
    random_shuffle(p + 1, p + n + 1);
    for (int i = 1; i <= n; i ++)
        if (p[i] == s)
            swap(p[i], p[1]);
    for (int i = 1; i <= min(n, 1000); i ++)
    {
        Query(p[i]);
        if (val[p[i]] < x && val[p[i]] > cv)
            cv = val[p[i]], cp = p[i];
    }
    if (!cp)
        Print(val[s]);
    while (true)
    {
        if (!~nxt[cp])
            Print(-1);
        cp = nxt[cp];
        Query(cp);
        if (val[cp] >= x)
            Print(val[cp]);
    }
    return 0;
}

C. Upgrading Tree

那个限制提示我们找重心。
以重心为根构造一下发现可以调整到所有点深度不超过2
两个重心就分开算就好了。

#include <bits/stdc++.h>
#define xx first
#define yy second
#define mp make_pair
#define pb push_back
#define mset(x, y) memset(x, y, sizeof x)
#define mcpy(x, y) memcpy(x, y, sizeof x)
using namespace std;

typedef long long LL;
typedef pair <int, int> pii;

inline int Read()
{
    int x = 0, f = 1, c = getchar();
    for (; !isdigit(c); c = getchar())
        if (c == '-')
            f = -1;
    for (;  isdigit(c); c = getchar())
        x = x * 10 + c - '0';
    return x * f;
}

const int MAXN = 200005;

int par[MAXN], siz[MAXN], st[MAXN], dep[MAXN], tp, n;
vector <int> adj[MAXN], c[MAXN], r;
vector <pair <int, pii>> ans;

inline void Dfs(int x, int p)
{
    bool f = 1;
    siz[x] = 1;
    for (auto y : adj[x])
        if (y ^ p)
        {
            Dfs(y, x), siz[x] += siz[y];
            if (siz[y] > n >> 1)
                f = 0;
        }
    if (n - siz[x] > n >> 1)
        f = 0;
    if (f)
        r.pb(x);
}

inline void Dfs2(int x, int p)
{
    par[st[tp ++] = x] = p;
    if (dep[x] >= 3)
        c[st[1]].pb(x);
    for (auto y : adj[x])
        if (y ^ p)
            dep[y] = dep[x] + 1, Dfs2(y, x);
    tp --;
}

int main()
{
#ifdef wxh010910
    freopen("data.in", "r", stdin);
#endif
    n = Read();
    for (int i = 1, x, y; i < n; i ++)
        x = Read(), y = Read(), adj[x].pb(y), adj[y].pb(x);
    Dfs(1, 0);
    if (r.size() == 1)
        Dfs2(r[0], 0);
    else
        Dfs2(r[0], r[1]), Dfs2(r[1], r[0]);
    for (int i = 1; i <= n; i ++)
        if (c[i].size())
        {
            int cur = i;
            for (auto x : c[i])
                ans.pb(mp(par[i], mp(cur, x))), ans.pb(mp(x, mp(par[x], i))), cur = x;
            ans.pb(mp(par[i], mp(cur, i)));
        }
    printf("%d\n", ans.size());
    for (auto x : ans)
        printf("%d %d %d\n", x.xx, x.yy.xx, x.yy.yy);
}

D. Dynamic Shortest Path

这是个暴力题…时限有毒…
考虑先跑一遍最短路,由于每次操作只会把边权增加1,所以记disdelta就可以跑一个BFS之类的东西来更新答案,可以去掉一个log

#include <bits/stdc++.h>
#define xx first
#define yy second
#define mp make_pair
#define pb push_back
#define mset(x, y) memset(x, y, sizeof x)
#define mcpy(x, y) memcpy(x, y, sizeof x)
using namespace std;

typedef long long LL;
typedef pair <int, int> pii;

inline int Read()
{
    int x = 0, f = 1, c = getchar();
    for (; !isdigit(c); c = getchar())
        if (c == '-')
            f = -1;
    for (;  isdigit(c); c = getchar())
        x = x * 10 + c - '0';
    return x * f;
}

const int MAXN = 100005;

int n, m, Q, mx, hed[MAXN], p[MAXN], v[MAXN], w[MAXN], f[MAXN];
vector <int> d[MAXN];
LL dis[MAXN], INF;
bool vis[MAXN];

inline void Dijkstra()
{
    priority_queue <pair <LL, int>, vector <pair <LL, int>>, greater <pair <LL, int>>> q;
    mset(dis, 0x3f); INF = dis[0];
    dis[1] = 0; q.push(mp(0, 1));
    while (!q.empty())
    {
        int x = q.top().yy; q.pop();
        if (vis[x])
            continue;
        vis[x] = 1;
        for (int i = hed[x]; i; i = v[i])
            if (dis[p[i]] > dis[x] + w[i])
                dis[p[i]] = dis[x] + w[i], q.push(mp(dis[p[i]], p[i]));
    }
}

int main()
{
#ifdef wxh010910
    freopen("data.in", "r", stdin);
#endif
    n = Read(), m = Read(), Q = Read();
    for (int i = 1, x, y; i <= m; i ++)
        x = Read(), y = Read(), w[i] = Read(), p[i] = y, v[i] = hed[x], hed[x] = i;
    Dijkstra();
    while (Q --)
        if (Read() == 1)
        {
            int x = Read();
            if (dis[x] >= INF)
                puts("-1");
            else
                printf("%I64d\n", dis[x]);
        }
        else
        {
            for (int x = Read(); x; x --)
                w[Read()] ++;
            mset(f, 0x3f);
            mx = f[1] = 0; d[0].pb(1);
            for (int i = 0; i <= mx; i ++)
                for (int j = 0; j < d[i].size(); j ++)
                {
                    int x = d[i][j];
                    if (i > f[x])
                        continue;
                    for (int k = hed[x]; k; k = v[k])
                        if (f[p[k]] > f[x] + dis[x] + w[k] - dis[p[k]])
                        {
                            f[p[k]] = f[x] + dis[x] + w[k] - dis[p[k]];
                            if (f[p[k]] <= n)
                                d[f[p[k]]].pb(p[k]), mx = max(mx, f[p[k]]);
                        }
                }
            for (int i = 0; i <= mx; i ++)
                d[i].clear();
            for (int i = 1; i <= n; i ++)
                if (dis[i] < INF)
                    dis[i] += f[i];
        }
    return 0;
}

E. Maximum Flow

你发现那个东西就是要求一个最小割。
对于uv有流的,要连一条vuinf边,否则连uvinf边,这样求出来一个割可以保证这样不会再能增广。
然后随便跑个上下界网络流就行了。

#include <bits/stdc++.h>
#define xx first
#define yy second
#define mp make_pair
#define pb push_back
#define mset(x, y) memset(x, y, sizeof x)
#define mcpy(x, y) memcpy(x, y, sizeof x)
using namespace std;

typedef long long LL;
typedef pair <int, int> pii;

inline int Read()
{
    int x = 0, f = 1, c = getchar();
    for (; !isdigit(c); c = getchar())
        if (c == '-')
            f = -1;
    for (;  isdigit(c); c = getchar())
        x = x * 10 + c - '0';
    return x * f;
}

const int MAXN = 105;
const int MAXM = 10005;
const int INF = 0x3f3f3f3f;

namespace Flow
{
    struct Edge
    {
        int p, v, w;
    } e[MAXM];

    int e_cnt, S, T, V, ql, qr, q[MAXN], hed[MAXN], dis[MAXN], cur[MAXN];

    inline void Init(int n)
    {
        V = n;
        for (int i = 0; i < V; i ++)
            hed[i] = 0;
        e_cnt = 1;
    }

    inline void Addedge(int x, int y, int w)
    {
        e[++ e_cnt] = {y, hed[x], w}; hed[x] = e_cnt;
        e[++ e_cnt] = {x, hed[y], 0}; hed[y] = e_cnt;
    }

    inline bool Bfs()
    {
        for (int i = 0; i < V; i ++)
            dis[i] = 0;
        dis[q[ql = 0] = S] = qr = 1;
        while (ql ^ qr)
        {
            int x = q[ql ++];
            for (int i = hed[x]; i; i = e[i].v)
                if (e[i].w && !dis[e[i].p])
                    dis[q[qr ++] = e[i].p] = dis[x] + 1;
        }
        return dis[T];
    }

    inline int Dfs(int x, int f)
    {
        if (x == T)
            return f;
        int ret = 0, t = 0;
        for (int &i = cur[x]; i; i = e[i].v)
            if (e[i].w && dis[e[i].p] == dis[x] + 1)
            {
                t = Dfs(e[i].p, min(f, e[i].w));
                f -= t; ret += t; e[i].w -= t; e[i ^ 1].w += t;
                if (!f)
                    return ret;
            }
        return dis[x] = -1, ret;
    }

    inline int Dinic()
    {
        int ret = 0;
        while (Bfs())
        {
            for (int i = 0; i < V; i ++)
                cur[i] = hed[i];
            ret += Dfs(S, INF);
        }
        return ret;
    }
}

int n, m, s, t, d[MAXN], u[MAXM], v[MAXM], f[MAXM], g[MAXM];

int main()
{
#ifdef wxh010910
    freopen("data.in", "r", stdin);
#endif
    n = Read(), m = Read(), s = Read(), t = Read();
    Flow::Init(n + 1); Flow::S = s; Flow::T = t;
    for (int i = 1; i <= m; i ++)
        u[i] = Read(), v[i] = Read(), g[i] = Read(), Flow::Addedge(u[i], v[i], g[i] ? 1 : INF), d[u[i]] ++, d[v[i]] --;
    for (int i = 1; i <= m; i ++)
        if (g[i])
            Flow::Addedge(v[i], u[i], INF);
    printf("%d\n", Flow::Dinic());
    for (int i = 1; i <= m; i ++)
        if (g[i])
            if (Flow::dis[u[i]] && !Flow::dis[v[i]])
                f[i] = 1;
    Flow::Init(n + 2); Flow::S = 0, Flow::T = n + 1;
    for (int i = 1; i <= m; i ++)
        if (g[i])
            Flow::Addedge(u[i], v[i], INF);
    Flow::Addedge(t, s, INF);
    for (int i = 1; i <= n; i ++)
        if (d[i] > 0)
            Flow::Addedge(i, n + 1, d[i]);
        else
            Flow::Addedge(0, i, -d[i]);
    Flow::Dinic();
    for (int i = 1, cnt = 0; i <= m; i ++)
        if (!g[i])
            puts("0 1");
        else
            cnt ++, printf("%d %d\n", Flow::e[cnt << 1 | 1].w + 1, Flow::e[cnt << 1 | 1].w + (!f[i]) + 1);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值