COMP 455: Models of Languages and Computations Homework 1 Fall 2024 Matlab

Java Python Homework Assignment 1:

COMP 455: Models of Languages and Computations

Fall 2024

DEADLINE: 11:59 P.M., FRIDAY, Sep 6, 2023

Problem 1 (20 points ; 4 parts)   Design DFAs to accept the following languages over the alphabet {a, b}. Show the DFAs in terms of their transition diagrams. Clearly indicate the initial state, the accepting states and the transitions following the conventions used in the lectures.

1.1 (5 points) L1 is the language of all strings in which every ‘b’ is immediately preceded by a ’a’.

1.2 (5 points) L2 is the language of all strings that begin with ‘ba’ and end with ‘ab’.

1.3 (5 points) L3 is the language of all strings that have an even number of a’s and an even number of b’s.

1.4 (5 points) L4 is the language of all strings that contain neither ‘aa’ nor ’bb’ as substrings.

fig1

Problem 2: (12 points; 3 parts)

Consider the two DFAs M1 (on the left) and M2 (on the right) over the alphabet {0, 1} shown in fig1. Let L1 and L2 be the languages accepted by M1 and M2 respectively.

2.1 (4 points) Describe succinctly in English the languages L1 and L2

2.2 (6 points) Using the product construction derive the transition diagram COMP 455: Models of Languages and Computations Homework Assignment 1 Fall 2024 Matlab of the automaton accepting the language L1 ∩ L2

2.3 (2 points) Using the same product, derive the transition diagram of the automaton accepting the language L1 ∪ L2

Problem 3 (10 points; 3 parts)

3.1 (5 points) Construct an NFA M over the alphabet {a, b} such that the language accepted by M consists of strings in which the last but one symbol is ‘a’. Make sure M exhibits the two features that a DFA can not exhibit. Show the transition diagram of your NFA.

3.2 (2 points) Show a successful execution sequence for the input string babaa. You can show your result by writing an alternating sequence of states and input symbols so that it represents a sequence of transitions of M.

3.3 (3 points) Show three unsuccessful executions of M on the input aababab.

fig2

Problem 4 (10 points; 3 parts) Consider the NFA M shown in fig2.

4.1 (2 points) Show the formal specification of this NFA in terms of its 5 components. Use the notations developed in the class.

4.2 (2 points) Show the transition table of M

4.2 (6 points) Derive an equivalent DFA using the subset construction method. Show the transition diagram of the DFA. Show only the states that are reachable from the initial state of the DFA. You may use the breadth-first-method that optimizes the subset construction but you don’t have to         

深度学习作为人工智能的关键分支,依托多层神经网络架构对高维数据进行模式识别与函数逼近,广泛应用于连续变量预测任务。在Python编程环境中,得益于TensorFlow、PyTorch等框架的成熟生态,研究者能够高效构建面向回归分析的神经网络模型。本资源库聚焦于通过循环神经网络及其优化变体解决时序预测问题,特别针对传统RNN在长程依赖建模中的梯度异常现象,引入具有门控机制的长短期记忆网络(LSTM)以增强序列建模能力。 实践案例涵盖从数据预处理到模型评估的全流程:首先对原始时序数据进行标准化处理与滑动窗口分割,随后构建包含嵌入层、双向LSTM层及全连接层的网络结构。在模型训练阶段,采用自适应矩估计优化器配合早停策略,通过损失函数曲线监测过拟合现象。性能评估不仅关注均方根误差等量化指标,还通过预测值与真实值的轨迹可视化进行定性分析。 资源包内部分为三个核心模块:其一是经过清洗的金融时序数据集,包含标准化后的股价波动记录;其二是模块化编程实现的模型构建、训练与验证流程;其三是基于Matplotlib实现的动态结果展示系统。所有代码均遵循面向对象设计原则,提供完整的类型注解与异常处理机制。 该实践项目揭示了深度神经网络在非线性回归任务中的优势:通过多层非线性变换,模型能够捕获数据中的高阶相互作用,而Dropout层与正则化技术的运用则保障了泛化能力。值得注意的是,当处理高频时序数据时,需特别注意序列平稳性检验与季节性分解等预处理步骤,这对预测精度具有决定性影响。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值