【一天一道】You must do this in-place without altering the nodes' values

博客围绕单链表重排序问题展开,要求在不改变节点值的情况下原地操作,且有时间和空间限制。给出了具体解题步骤,包括用快慢指针找中点、链表翻转和链表合并,并提供了Java代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Given a singly linked list LL 0→L 1→…→L n-1→L n,
reorder it to: L 0→L n →L 1→L n-1→L 2→L n-2→… 

You must do this in-place without altering the nodes' values. 

For example,
Given{1,2,3,4}, reorder it to{1,4,2,3}.

题目比较简单,但是要求时间在1s内,空间在32768k内,完全不达标。。。

step1:快慢指针找中点;

step2:链表翻转;

step3:链表合并;

 

public class Solution {
    public void reorderList(ListNode head) {
        ListNode slow, quik, cur, pre;
        ListNode curHead;
        slow = head;
        quik = head;
        if(head ==null || head.next == null){
            return;
        }
        while(quik.next != null && quik.next.next != null){
            quik = quik.next.next;
            slow = slow.next;
        }
        cur = slow.next;
        slow.next = null;
        pre = null;
        while(cur != null){
            ListNode curPost = cur.next;
            cur.next = pre;
            pre = cur;
            cur = curPost;
        }
        curHead = head;
        while(curHead != null && pre != null){
            ListNode preNext = pre.next;
            pre.next = curHead.next;
            curHead.next = pre;
            curHead = pre.next;
            pre = preNext;
        }   
    }
}

### In-Place Algorithm Implementation and Usage In-place algorithms operate directly on input data structures without requiring additional memory allocation proportional to the size of the input. These algorithms modify elements within existing storage locations rather than creating new ones, which can lead to significant performance improvements by reducing space complexity. #### Characteristics of In-Place Algorithms An in-place operation modifies an object without producing a separate result object; instead, changes occur inside the original one. For instance, sorting operations like QuickSort or Merge Sort variants may implement this approach when working with arrays where swaps happen between indices belonging to the same array[^1]. When discussing refactorings as described elsewhere, transforming non-in-place methods into their counterparts could involve altering how temporary variables store intermediate results during computation phases while preserving overall functionality[^2]. #### Example: Implementing an In-Place Operation Using Python Consider reversing a list in place: ```python def reverse_in_place(lst): start_index = 0 end_index = len(lst)-1 while start_index < end_index: lst[start_index], lst[end_index] = lst[end_index], lst[start_index] start_index += 1 end_index -= 1 sample_list = ['a', 'b', 'c'] reverse_in_place(sample_list) print(sample_list) # Output will be ['c', 'b', 'a'] ``` This function reverses `lst` without allocating extra lists for storing reversed items temporarily. The swap happens internally through index manipulation alone. #### Applications Beyond Sorting and Reversal Beyond simple transformations such as reversal or ordering sequences numerically/alphabetically, other areas benefitting from in-place processing include matrix transposition, string manipulations, graph traversals optimized via adjacency matrices, etc.[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值