目录
1 介绍
我们处理悉尼-墨尔本的房价预测问题,数据集有些变量是字符串形式,有些和时间相关,在本实验中,我们主要使用时间编码、异常点检测zscore、特征编码:LabelEncoder、MEstimateEncoder,最后通过实验对比,给出结论。
数据集下载:https://download.youkuaiyun.com/download/ww596520206/87504283
2 模型1:baseline模型
2.1 导入包和数据
import numpy as np
import pandas as pd
from datetime import datetime
from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor
from sklearn.metrics import mean_squared_error,r2_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.preprocessing import LabelEncoder
np.random.seed(123)
data = pd.read_csv("data.csv")
2.2 处理时间维度,将date特征进行拆分,只取month、day
data["month"] = data.date.apply(lambda x: x.split()[0].split("-")[1]).astype("int")
data["day"] = data.date.apply(lambda x: x.split()[0].split("-")[2]).astype("int")
2.3 剔除异常点
我们使用z-score标准化先将数据转换为均值为0,方差为1的标准正态分布,然后只保留u-3σ到u+3σ之间的数据,为了方便,我们取绝对值,只保留小于u+3σ的数据。
from scipy import stats
z = np.abs(stats.zscore(data[['sqft_living','sqft_above','bathrooms','yr_built','sqft_lot','bedrooms']]))
data = data[(z<3).all(axis=1)]
print(len(data))
4435
2.3 删除无用的特征
data.drop(['street','statezip','city',"country","date"],axis=1, inplace = True)
2.4 划分数据集,数据归一化
x = data.drop(["price"],axis=1)
y = data["price"]
X_train, X_test, y_train, y_test = train_test_split(x, y,train_size=0.7,shuffle = False)
scaler = MinMaxScaler() #归一化
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
2.5 模型训练和验证
from sklearn.linear_model import LinearRegression
rf = LinearRegression()
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
print("mse:{}".format(mean_squared_error(y_test, y_pred)))
print("r2-score:{}".format(r2_score(y_test, y_pred)))
mse:707591647854.4553
r2-score:0.04118363082296694
3 模型2:使用LabelEncoder编码
3.1 增加LabelEncoder编码
我们对’street’,‘statezip’,'city’这三个维度进行编码
data["street"] = LabelEncoder().fit_transform(data["street"])
data["city"] = LabelEncoder().fit_transform(data["city"])
data["statezip"] = LabelEncoder().fit_transform(data["statezip"])
3.2 整体代码
import numpy as np
import pandas as pd
from datetime import datetime
from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor
from sklearn.metrics import mean_squared_error,r2_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.preprocessing import LabelEncoder
np.random.seed(123)
data = pd.read_csv("data.csv")
data["month"] = data.date.apply(lambda x: x.split()[0].split("-")[1]).astype("int")
data["day"] = data.date.apply(lambda x: x.split()[0].split("-")[2]).astype("int")
from scipy import stats
z = np.abs(stats.zscore(data[['sqft_living','sqft_above','bathrooms','yr_built','sqft_lot','bedrooms']]))
data = data[(z<3).all(axis=1)]
data["street"] = LabelEncoder().fit_transform(data["street"])
data["city"] = LabelEncoder().fit_transform(data["city"])
data["statezip"] = LabelEncoder().fit_transform(data["statezip"])
data.drop(["country","date"],axis=1, inplace = True)
x = data.drop(["price"],axis=1)
y = data["price"]
X_train, X_test, y_train, y_test = train_test_split(x, y,train_size=0.7,shuffle = False)
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
from sklearn.linear_model import LinearRegression
rf = LinearRegression()
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
print("mse:{}".format(mean_squared_error(y_test, y_pred)))
print("r2-score:{}".format(r2_score(y_test, y_pred)))
mse:706767197718.183
r2-score:0.04230079534663678
4 模型3:使用MEstimateEncoder编码
4.1 MEstimateEncoder编码
使用category_encoders的MEstimateEncoder编码
from category_encoders import MEstimateEncoder
encoder = MEstimateEncoder(cols=['street','statezip','city'],m=0.5)
encoder.fit(x,y)
x= encoder.transform(x)
4.2 整体代码
import numpy as np
import pandas as pd
from datetime import datetime
from sklearn.ensemble import RandomForestRegressor,GradientBoostingRegressor
from sklearn.metrics import mean_squared_error,r2_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.preprocessing import LabelEncoder
np.random.seed(123)
data = pd.read_csv("data.csv")
data["month"] = data.date.apply(lambda x: x.split()[0].split("-")[1]).astype("int")
data["day"] = data.date.apply(lambda x: x.split()[0].split("-")[2]).astype("int")
from scipy import stats
z = np.abs(stats.zscore(data[['sqft_living','sqft_above','bathrooms','yr_built','sqft_lot','bedrooms']]))
data = data[(z<3).all(axis=1)]
data.drop(["country","date"],axis=1, inplace = True)
x = data.drop(["price"],axis=1)
y = data["price"]
from category_encoders import MEstimateEncoder
encoder = MEstimateEncoder(cols=['street','statezip','city'],m=0.5)
encoder.fit(x,y)
x= encoder.transform(x)
X_train, X_test, y_train, y_test = train_test_split(x, y,train_size=0.7,shuffle = False)
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
from sklearn.linear_model import LinearRegression
rf = LinearRegression()
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
print("mse:{}".format(mean_squared_error(y_test, y_pred)))
print("r2-score:{}".format(r2_score(y_test, y_pred)))
mse:612704480.2477968
r2-score:0.9991697597238308
4.3 对比
通过对比,我们发现不同的特征编码能大幅度提升模型的性能。