ZOJ 3456 Traveler Nobita 最小生成树

本博客介绍了一个有趣的算法问题,旅行者 Nobita 使用时间机器回到了过去,并尝试每年在有限的时间内游览所有城市。文章详细解释了如何通过 Kruskal 算法寻找最优路径,以确保 Nobita 能够完成他的旅行计划。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Traveler Nobita

Time Limit: 2 Seconds      Memory Limit: 65536 KB

One day, Nobita used a time machine and went back to 1000 AD. He found that there are N cities in the kingdom he lived. The cities are numbered from 0 toN - 1. Before 1000 AD., there are no roads between any two cities. The kingdom will build one road between two cities at the beginning of each year starting from 1000 AD. There might be duplicated roads between two cities being built by the kingdom. You can assume that building a road takes no time.

At the beginning of every year, after the new road is built, Nobita will try to make a schedule to travel around all cities within that year. The travel should both begin at and end at the capital city - city0. Every time Nobita arrived at a city i, he will spent t1i days in that city, regardless of how many times he had come to the city. Of course he wouldn't need to spend any time in the capital city (that is to say, t10 is always 0). And t2i hours is required to pass road #i. Note that to pass each road, a passport of that road is required. And the kingdom limits that one person can only have no more than N - 1 passports of roads each year.

You are given information about the roads built in M years. Please find out the minimum time Nobita needed to complete his traveling schedule.

Input

There are multiple cases. The first line of a test case contains two integers, N (2 ≤ N ≤ 200) and M (1 ≤ M ≤ 10000). The next line contains N integers, indicating t10 ... t1n - 1. (0 ≤ t1i ≤ 50) The next M lines, the ith (0 ≤ i < M) line of this section contains three integers, uivit2i, (0 ≤ uivi < N; 0 ≤ t2i ≤ 5000), indicating that in year 1000 + i AD., a road will be built between city ui and city vit1i and t2i have been described above.

Output

For each case, you should output M lines. For the ith line, if Nobita can make a schedule in year 1000 + i, output the minimal days he can finish that schedule, rounded to two decimal digits. Otherwise output -1. There should be a blank line after each case.

Sample Input
5 6
0 5 2 5 4
0 1 1
0 2 2
0 3 5
3 4 2
2 4 4
1 2 1
Sample Output
-1
-1
-1
21.83
19.00
19.00

题意:有n个城市,每年修一条路,总共修m年,注意是从1000年开始的。Nobita想要每年走完一次n个城市,每次从0号出发,最后再回到0号,在每个城市待t1天,从一个城市到另一个城市要t2小时,注意这里的时间单位不统一,判断年份时,也要注意闰年和平年

思路:kruscal即可找到最短的路线,对于u,v两个点之间的边权,存的是在u,v两个城市呆的时间和行走路程所用时间,在0号不需要花费时间。kruscal过程中有一个优化,即如果两个点已经是一个集合中的,那么连接这两点的边就可以删除,因为之前已经有花费更少的边了,所以这条边,就是无用的。
#include <iostream>
#include <stdio.h>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#define N 10009
using namespace std;

int n,m;
int num;
int a[N];
int fa[N];

struct node
{
  int u,v,len;
  bool operator<(const node &a)const
  {
      return len<a.len;
  }
};
vector<node>ed;

int findfa(int x)
{
    int r = x, t;

    while(r!=fa[r])
          r=fa[r];

   // for(;fa[r]>=0;r=fa[r]);

    while(x!=r)
    {
        t = fa[x];
        fa[x] = r;
        x = t;
    }

    return r;
}

int check(int x)
{
    if(x%400==0 || (x%4==0&&x%100))
    return 1;

    return 0;
}

void add(int u,int v,int w)
{
    node e={u,v,(a[u]+a[v])*24+w*2};
    ed.push_back(e);
}

void uniontwo(int a,int b)
{
    int aa=findfa(a);
    int bb=findfa(b);
    int tmp=fa[aa]+fa[bb];
    if(fa[aa]>fa[bb])
    {
        fa[aa]=bb;
        fa[bb]=tmp;
    }
    else
    {
        fa[bb]=aa;
        fa[aa]=tmp;
    }
}

int kruscal()
{
    for(int i=1;i<=n;i++)fa[i]=i;

    sort(ed.begin(),ed.end());
    int ans=0,cnt=0;

//    for(vector<node>::iterator it=ed.begin();it!=ed.end();it++)
//    {
//        cout<<it->u<<" "<<it->v<<" "<<it->len<<endl;
//    }

    for(vector<node>::iterator it=ed.begin();it<ed.end();)
    {
        int u=it->u;
        int v=it->v;
        int l=it->len;
        int fu=findfa(u);
        int fv=findfa(v);

        if( findfa(u)!=findfa(v) )
        {
            ans+=l;
            cnt++;
            it++;
            if(fv>fu)fa[fv]=fu;
            else
            fa[fu]=fv;
            //uniontwo(u,v);
        }
        else
        ed.erase(it);//已经有更小的边用于连接,此边即没什么用,可删除
    }
    //cout<<"cnt="<<cnt<<endl;

    if(cnt<n-1) return -1;
    return ans;

}

int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        num=0;
        for(int i=0;i<n;i++)
        scanf("%d",&a[i]);

        ed.clear();
        int u,v,w;

        for(int i=0;i<m;i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            add(u,v,w);

            if(i<n-2)
            {
                puts("-1");
                continue;
            }

            int x=kruscal();
            //cout<<"********"<<endl;

            //cout<<"x="<<x<<endl;
            if(x==-1)
            {
                puts("-1");
                continue;
            }
            int yy;
            if(check(1000+i)) yy=366;
            else yy=365;

            if(yy*24<x)
            puts("-1");
            else
            printf("%.2f\n",x/24.0);

        }
        puts("");

    }

    return 0;
}










评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值