Search in Rotated Sorted Array I
Search in Rotated Sorted Array II
思路:Search in Rotated Sorted Array I
题目一看就知道是binary search。所以关键点在于每次要能判断出target位于左半还是右半序列。解这题得先在纸上写几个rotated sorted array的例子出来找下规律。Rotated sorted array根据旋转得多少有两种情况:
原数组:0 1 2 4 5 6 7
情况1: 6 7 0 1 2 4 5 起始元素0在中间元素的左边
情况2: 2 4 5 6 7 0 1 起始元素0在中间元素的右边
两种情况都有半边是完全sorted的。根据这半边,当target != A[mid]时,可以分情况判断:
当A[mid] < A[end] < A[start]:情况1,右半序列A[mid+1 : end] sorted
A[mid] < target <= A[end], 右半序列,否则为左半序列。
当A[mid] > A[start] > A[end]:情况2,左半序列A[start : mid-1] sorted
A[start] <= target < A[mid], 左半序列,否则为右半序列
Base case:当start + 1 = end时
假设 2 4:
A[mid] = A[start] = 2 < A[end],A[mid] < target <= A[end] 右半序列,否则左半序列
假设 4 2:
A[mid] = A[start ] = 4 > A[end], A[start] <= target < A[mid] 左半序列,否则右半序列
加入base case的情况,最终总结的规律是:
A[mid] = target, 返回mid,否则
(1) A[mid] < A[end]: A[mid+1 : end] sorted
A[mid] < target <= A[end] 右半,否则左半。
(2) A[mid] > A[end] : A[start : mid-1] sorted
A[start] <= target < A[mid] 左半,否则右半。
思路:Search in Rotated Sorted Array II
当有重复数字,会存在A[mid] = A[end]的情况。此时右半序列A[mid-1 : end]可能是sorted,也可能并没有sorted,如下例子。
3 1 2 3 3 3 3
3 3 3 3 1 2 3
所以当A[mid] = A[end] != target时,无法排除一半的序列,而只能排除掉A[end]:
A[mid] = A[end] != target时:搜寻A[start : end-1]
正因为这个变化,在最坏情况下,算法的复杂度退化成了O(n):
迭代解法
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e.,
0 1 2 4 5 6 7
might become 4
5 6 7 0 1 2
).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
Search in Rotated Sorted Array II
Follow up for "Search in Rotated Sorted Array":
What if duplicates are allowed?
What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given target is in the array.
思路:Search in Rotated Sorted Array I
题目一看就知道是binary search。所以关键点在于每次要能判断出target位于左半还是右半序列。解这题得先在纸上写几个rotated sorted array的例子出来找下规律。Rotated sorted array根据旋转得多少有两种情况:
原数组:0 1 2 4 5 6 7
情况1: 6 7 0 1 2 4 5 起始元素0在中间元素的左边
情况2: 2 4 5 6 7 0 1 起始元素0在中间元素的右边
两种情况都有半边是完全sorted的。根据这半边,当target != A[mid]时,可以分情况判断:
当A[mid] < A[end] < A[start]:情况1,右半序列A[mid+1 : end] sorted
A[mid] < target <= A[end], 右半序列,否则为左半序列。
当A[mid] > A[start] > A[end]:情况2,左半序列A[start : mid-1] sorted
A[start] <= target < A[mid], 左半序列,否则为右半序列
Base case:当start + 1 = end时
假设 2 4:
A[mid] = A[start] = 2 < A[end],A[mid] < target <= A[end] 右半序列,否则左半序列
假设 4 2:
A[mid] = A[start ] = 4 > A[end], A[start] <= target < A[mid] 左半序列,否则右半序列
加入base case的情况,最终总结的规律是:
A[mid] = target, 返回mid,否则
(1) A[mid] < A[end]: A[mid+1 : end] sorted
A[mid] < target <= A[end] 右半,否则左半。
(2) A[mid] > A[end] : A[start : mid-1] sorted
A[start] <= target < A[mid] 左半,否则右半。
递归解法:
class Solution {
public:
int search(int A[], int n, int target) {
return searchRotatedSortedArray(A, 0, n-1, target);
}
int searchRotatedSortedArray(int A[], int start, int end, int target) {
if(start>end) return -1;
int mid = start + (end-start)/2;
if(A[mid]==target) return mid;
if(A[mid]<A[end]) { // right half sorted
if(target>A[mid] && target<=A[end])
return searchRotatedSortedArray(A, mid+1, end, target);
else
return searchRotatedSortedArray(A, start, mid-1, target);
}
else { // left half sorted
if(target>=A[start] && target<A[mid])
return searchRotatedSortedArray(A, start, mid-1, target);
else
return searchRotatedSortedArray(A, mid+1, end, target);
}
}
};
递归解法很容易改写成迭代解法:
class Solution {
public:
int search(int A[], int n, int target) {
int start = 0, end = n-1;
while(start<=end) {
int mid = start + (end-start)/2;
if(A[mid]==target) return mid;
if(A[mid]<A[end]) { // right half sorted
if(target>A[mid] && target<=A[end])
start = mid+1;
else
end = mid-1;
}
else { // left half sorted
if(target>=A[start] && target<A[mid])
end = mid-1;
else
start = mid+1;
}
}
return -1;
}
};
思路:Search in Rotated Sorted Array II
当有重复数字,会存在A[mid] = A[end]的情况。此时右半序列A[mid-1 : end]可能是sorted,也可能并没有sorted,如下例子。
3 1 2 3 3 3 3
3 3 3 3 1 2 3
所以当A[mid] = A[end] != target时,无法排除一半的序列,而只能排除掉A[end]:
A[mid] = A[end] != target时:搜寻A[start : end-1]
正因为这个变化,在最坏情况下,算法的复杂度退化成了O(n):
序列 2 2 2 2 2 2 2 中寻找target = 1。
迭代解法
class Solution {
public:
bool search(int A[], int n, int target) {
int start = 0, end = n-1;
while(start<=end) {
int mid = start + (end-start)/2;
if(A[mid]==target) return true;
if(A[mid]<A[end]) { // right half sorted
if(target>A[mid] && target<=A[end])
start = mid+1;
else
end = mid-1;
}
else if(A[mid]>A[end]) { // left half sorted
if(target>=A[start] && target<A[mid])
end = mid-1;
else
start = mid+1;
}
else {
end--;
}
}
return false;
}
};