题意:给出n个人,每个人有一些金币,可以给一些金币左边或者右边的人,最终使得每个人有相同的金币,问最小的转移金币是多少?
思路:可以假定给金币方向是逆时间方向,值可能是正负。M表示最终每个人有的金币,用xi表示第i个人所给的,Pi表示第i个人有的金币
有M = P1 - x1 + x2 => x2 = x1 - (P1 - M) => x2 = x1 - c1
P2 - x2 + x3 = M => x3 = x1 - (P1 + P2 - 2M) => x3 = x1 - c2;
Pn-1 - xn-1 + xn = M => xn = x1 - (P1+P2+...+Pn-1 - (n-1)M) => xn = x1 - cn-1
则总的转移次数为sum = |x1|+|x1-c1|+...+|x1-cn-1|是最小值,转变为数学问题0,c1,c2,cn-1这几个点构成的数轴上,找出一个点,使得到这几个点的和最小,显然是中位点
代码如下:
#include <iostream>
#include <fstream>
#include <algorithm>
#include <vector>
using namespace std;
typedef unsigned long long ULL;
class SpreadingTheWealth
{
public:
ULL spreadTheWealth(vector<ULL> v)
{
vector<int> c(v.size());
ULL sum = 0;
for (size_t i = 0; i < v.size(); i++) sum += v[i];
ULL m = sum / v.size();
c[0] = 0;
for (size_t i = 1; i < c.size(); i++)
{
c[i] = c[i - 1] + v[i - 1] - m;
}
sort(c.begin(), c.end());
ULL ans = 0;
ULL x = c[c.size() / 2];
for (size_t i = 0; i < v.size(); i++)
{
ans += labs(c[i] - x);
}
return ans;
}
};
SpreadingTheWealth solver;
int main()
{
#ifndef ONLINE_JUDGE
ifstream fin("f:\\OJ\\uva_in.txt");
streambuf *old = cin.rdbuf(fin.rdbuf());
#endif
int n;
while (cin >> n)
{
vector<ULL> v;
for (int i = 0; i < n; i++)
{
ULL coin;
cin >> coin;
v.push_back(coin);
}
cout << solver.spreadTheWealth(v) << endl;
}
#ifndef ONLINE_JUDGE
cin.rdbuf(old);
#endif
return 0;
}