LeetCode Scramble String(动态规划)

本文介绍了一种算法,用于判断两个等长字符串s2是否为s1的打散结构表示。通过递归地将字符串划分为二叉树结构,并允许交换任意非叶子节点的两个孩子来实现字符串的打散。文章提供了详细的DP解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = "great":

    great
   /    \
  gr    eat
 / \    /  \
g   r  e   at
           / \
          a   t

To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".

    rgeat
   /    \
  rg    eat
 / \    /  \
r   g  e   at
           / \
          a   t

We say that "rgeat" is a scrambled string of "great".

Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".

    rgtae
   /    \
  rg    tae
 / \    /  \
r   g  ta  e
       / \
      t   a

We say that "rgtae" is a scrambled string of "great".

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.

题意:给出两个字符串s1和s2,问s2是否是s1的二叉树的打散结构表示 

思路:用dp(len,i,j)表示从s1的i索引,s2的j索引开始,长度为len的子串是否是打散结构

则要么前k个字符相等或者交叉相等,所有以dp(len,i,j)=(dp(k,i,j) && dp(len - k, i + k, j + k)) || (dp(k, i, j + len - k) && (dp(len - k, i + k, j))

具体代码如下:

public class Solution
{
    public boolean isScramble(String s1, String s2) {
        int len1 = s1.length();
        int len2 = s2.length();

        if (len1 != len2) return false;

        boolean[][][] dp = new boolean[len1 + 1][len1 + 1][len1 + 1];

        for (int i = 0; i < len1; i++) {
            for (int j = 0; j < len2; j++) {
                dp[1][i][j] = s1.charAt(i) == s2.charAt(j);
            }
        }

        for (int len = 2; len <= len1; len++) {
            for (int i = 0; i <= len1 - len; i++) {
                for (int j = 0; j <= len1 - len; j++) {
                     for (int k = 1; k < len && !dp[len][i][j]; k++) {
                         dp[len][i][j] = (dp[k][i][j] && dp[len - k][i + k][j + k]) || (dp[k][i + len - k][j] && dp[len - k][i][j + k]);
                     }
                }
            }
        }

        return dp[len1][0][0];

    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kgduu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值