动态规划
一、动态规划解题套路框架
动态规划问题性质
1.暴力递归
引出 重叠子问题
2.使用“备忘录”
目的:重叠子问题(使用数组或哈希表)
带备忘录的递归解法的效率已经和迭代的动态规划解法一样了。实际上,这种解法和常见的动态规划解法已经差不多了,只不过这种解法是「自顶向下」进行「递归」求解,我们更常见的动态规划代码是「自底向上」进行「递推」求解。
3.自底向上
啥叫「自底向上」?反过来,我们直接从最底下、最简单、问题规模最小、已知结果的 f(1)
和 f(2)
(base case)开始往上推,直到推到我们想要的答案 f(20)
。这就是「递推」的思路,这也是动态规划一般都脱离了递归,而是由循环迭代完成计算的原因。
4.状态转移方程
f(n)
的函数参数会不断变化,所以你把参数 n
想做一个状态,这个状态 n
是由状态 n - 1
和状态 n - 2
转移(相加)而来,这就叫状态转移,仅此而已。
状态转移方程直接代表着暴力解法。
千万不要看不起暴力解,动态规划问题最困难的就是写出这个暴力解,即状态转移方程。
只要写出暴力解,优化方法无非是用备忘录或者 DP table,再无奥妙可言。
5.细节优化:
一般是动态规划问题的最后一步优化,如果我们发现每次状态转移只需要 DP table 中的一部分,那么可以尝试缩小 DP table 的大小,只记录必要的数据,从而降低空间复杂度
例题1,零钱兑换
带备忘录的递归解法
class Solution {
int[] memo;
int coinChange(int[] coins, int amount) {
memo = new int[amount + 1];
// 备忘录初始化为一个不会被取到的特殊值,代表还未被计算
Arrays.fill(memo, -666);
return dp(coins, amount);
}
int dp(int[] coins, int amount) {
if (amount == 0) return 0;
if (amount < 0) return -1;
// 查备忘录,防止重复计算
if (memo[amount] != -666)
return memo[amount];
int res = Integer.MAX_VALUE;
for (int coin : coins) {
// 计算子问题的结果
int subProblem = dp(coins, amount - coin);
// 子问题无解则跳过
if (subProblem == -1) continue;
// 在子问题中选择最优解,然后加一
res = Math.min(res, subProblem + 1);
}