HDU 1290 献给杭电五十周年校庆的礼物

本文探讨了平面如何划分三维空间的问题,并通过数学公式总结了随着平面数量增加,空间被划分的最大区块数目的规律。

纯粹的数学题,平面划分空间,

要想每一平面划分都得到最大值,就必须让这一平面与所有平面相交,

划分的块的数量sum[n]:

2,4,8,15,26……

前后的差a[n]:

2,4,7,11……

a[n]与a[n-1]两者之差:

2,3,4……

a[n]=2+2+3+4+……+n=1+n*(n+1)/2;

sum[n]=sum[n-1]+a[n];

递归得:

sum[n]=(n*n*n+5*n+6)/6

代码:

#include <iostream>
using namespace std;
int main()
{
	int n;
	while(cin>>n)
	{
		cout<<(n*n*n+5*n+6)/6<<endl;
	}
	return 0;
}



基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值