
社交网络分析
文章平均质量分 95
是Yu欸
这里是我读博期间的笔记本,记录学习和成长,争取顺利毕业ing
展开
-
【2024-完整版】python爬虫 批量查询自己所有优快云文章的质量分:附整个实现流程
python爬虫 批量查询自己所有优快云文章的质量分原创 2024-03-14 15:11:16 · 13646 阅读 · 173 评论 -
【2024-简洁版】python爬虫 批量查询自己所有优快云文章的质量分:方便快速上手修改代码
python爬虫 批量查询自己所有优快云文章的质量分原创 2024-03-14 15:10:59 · 6545 阅读 · 45 评论 -
社交网络分析(汇总)
社交网络分析,作为计算机科学和社会科学领域的交叉研究领域,一直以来都备受关注。在数字时代的今天,社交网络已经成为了人们生活中不可或缺的一部分,无论是社交媒体上的互动、信息传播、还是商业活动和政治运动,都离不开社交网络的影响和作用。为了更好地理解和利用社交网络,研究人员们开展了大量的工作,其中包括了各种各样的分析方法和技术。在本系列文章中,我们将深入探讨社交网络分析的多个方面,从起源和发展,到不同领域的应用,再到核心概念和前沿技术,希望能够帮助您深入了解社交网络分析领域的重要内容,为您在研究和实践中提供有原创 2023-12-21 17:09:16 · 4385 阅读 · 13 评论 -
社交网络分析7:社交网络舆情分析 、 社交网络舆情演化传播建模 、 社交网络舆情用户研究 意见领袖识别 情感分析 、结构洞 、 生命周期 、 舆情分析 知识图谱 主题图谱 、 异质平均场
在数字化时代,社交网络不仅重塑了我们的沟通方式,也深刻影响了舆情的形成与传播。从高校事件到政治竞选,从公共危机到品牌形象,舆情在社交网络的涟漪效应下,变得更加迅速而复杂。《社交网络分析7:社交网络舆情分析》旨在深入探讨这一现象,提供一个全面的视角来理解和分析社交网络中舆情的动态。在这一系列博文中,我们将探索舆情的定义和影响、研究现状、演化传播建模,以及在社交网络中舆情的特定用户研究。我们会深入探讨诸如知识图谱、异质平均场方法、淬火平均场方法等先进技术在舆情分析中的应用,同时也会触及到社交网络舆情的关键组原创 2023-12-20 09:13:49 · 9683 阅读 · 32 评论 -
社交网络分析6:社交网络不实信息传播分析 、 ILDR(Ignorant-Lurker-Disseminator-Removed)传播动力学模型 、 平衡点 、 平衡点的稳定性分析 、数值仿真
首先,我们将介绍不实信息传播的定义和背景,深入理解其传播途径和特点,以及当前的研究现状。特别地,我们聚焦于垃圾信息的ILDR(Ignorant-Lurker-Disseminator-Removed)传播动力学模型,这是一个创新的方法,用于模拟和分析社交网络上的信息流动。通过比较ILDR模型与传统病毒传播模型(如SIRS和SEIR)的不同,我们将揭示这种新模型在社交网络不实信息传播分析中的主要创新点。我们还将讨论ILDR模型的合理性和稳定性分析的重要性,解读其中涉及的关键概念,如平衡点和各种稳定性类型。原创 2023-12-20 09:12:32 · 2538 阅读 · 10 评论 -
社交网络分析5:社交网络信息传播动力学。信息传播 、传染病模型、博弈模型和物理系统模型 、传播动力学分析 、 未来发展趋势与展望
欢迎来到探索`社交网络信息传播动力学`的博客。随着社交网络在我们生活中扮演着越来越核心的角色,理解信息如何在这些复杂网络中传播变得至关重要。在这篇博客中,我们将深入挖掘信息传播的动力学原理,从基本的研究概述到复杂的数学模型,再到实际应用和未来发展的前景。我们将首先介绍信息传播的各个方面,包括传播、接收、发布和反馈的过程,以及如何预测和控制这些过程。接着,我们将深入研究社交网络信息传播的不同模型,包括传染病模型、博弈模型和物理系统模型,并探讨它们的特点和相互之间的比较。我们还会讨论新的物理学模型的提出原创 2023-12-18 12:25:23 · 4016 阅读 · 44 评论 -
社交网络分析4(下):社交网络链路预测分析、LightGBM框架、LLSLP方法(LightGBM 堆叠链路预测)、堆叠泛化 、社交网络链路预测分析的挑战
LightGBM(Light Gradient Boosting Machine)是一种创新的集成学习框架,旨在优化传统梯度提升决策树(GBDT)的性能和速度,现已成为机器学习领域的核心工具之一。Exclusive Feature Bundling (EFB)是LightGBM中的一个创新算法,旨在有效减少用于构建直方图的特征数量,从而降低计算复杂度,特别适用于特征中包含大量稀疏特征的场景。高效快速:LightGBM在速度方面具有显著优势,能够高效地进行模型训练和预测。内存占用少。原创 2023-12-18 11:26:47 · 3014 阅读 · 18 评论 -
社交网络分析4(上):社交网络链路预测分析、Logistic回归模型、LLSLP方法(LightGBM 堆叠链路预测)、正则化方法、多重共线性
在这个由连接驱动的数字时代,社交网络不仅仅是连接人与人的桥梁,它们还蕴含着深刻的社会、经济和技术洞见。从Facebook到LinkedIn,社交网络的每一个点击、每一条信息流,都构成了一个复杂且动态的网络结构。但是,这些看似简单的连接背后隐藏着什么秘密?如何预测未来可能形成的社交联系,从而揭示隐藏在数据背后的深层次模式和趋势?这就是社交网络链路预测分析的魅力所在。在这篇博客中,我们将深入探讨社交网络链路预测分析的核心,解析它的基本概念、重要性以及各种现代方法。我们将介绍从基于网络结构的传统方法到利用深度原创 2023-12-17 23:52:12 · 3461 阅读 · 32 评论 -
社交网络分析3:社交网络隐私攻击、保护的基本概念和方法 + 去匿名化技术 + 推理攻击技术 + k-匿名 + 基于聚类的隐私保护算法
欢迎阅读社交网络系列博客之《社交网络分析3(下)》。通过本篇博客,希望能提供一个较为全面的视角,以理解社交网络中的隐私保护问题、方法,以及这些领域的最新技术发展。社交网络,作为现代互联网时代的一个重要组成部分,不仅为我们提供了互相交流和分享的平台,也成为了大数据和情感分析的宝贵资源。然而,随着社交网络的日益普及和数据量的爆炸式增长,用户隐私保护成为了一个不可忽视的问题。本篇博客将从多个角度剖析社交网络中的隐私泄露问题,探讨其背后的原因、可能的攻击方式以及对策。- 社交网络隐私泄露在这个数字化时代原创 2023-12-17 21:11:56 · 4168 阅读 · 16 评论 -
社交网络分析2(下):社交网络情感分析的方法、挑战与前沿技术
随着社交网络在我们日常生活中的普及,理解和分析这些平台上的情感表达变得越来越重要。社交网络情感分析不仅帮助我们洞察公众情绪,还能在商业、政治和社会研究领域提供关键见解。本博客旨在深入解析情感分析的核心概念、面临的挑战及其在社交网络领域的应用。我们将探讨不同的情感分析方法、最新的技术进展和主要的Python工具库,为感兴趣的研究者和实践者提供一个全面的指南。原创 2023-12-16 21:27:06 · 3285 阅读 · 8 评论 -
社交网络分析2(上):社交网络情感分析的方法、挑战与前沿技术
随着社交网络在我们日常生活中的普及,理解和分析这些平台上的情感表达变得越来越重要。社交网络情感分析不仅帮助我们洞察公众情绪,还能在商业、政治和社会研究领域提供关键见解。本博客旨在深入解析情感分析的核心概念、面临的挑战及其在社交网络领域的应用。我们将探讨不同的情感分析方法、最新的技术进展和主要的Python工具库,为感兴趣的研究者和实践者提供一个全面的指南。原创 2023-12-14 23:55:02 · 4518 阅读 · 55 评论 -
社交网络分析1:起源发展、不同领域的应用、核心概念
在数字化时代的浪潮中,社交网络已成为我们生活的一个不可或缺的部分,它不仅改变了我们与人交流的方式,也重塑了信息传播的格局。从微观的个人互动到宏观的社会结构,社交网络编织了一个错综复杂的联系网。在这篇博客中,我们将深入探索社交网络分析的世界 — 从它的起源和发展到其在不同领域的应用,以及社交网络理论的核心概念:图论、网络的统计特性、以及统计物理学来理解和分析社交网络的复杂性。无论你是社交网络分析的初学者还是寻求深入理解的专业人士,这篇博客都将为你提供独特的视角和深刻的洞见。原创 2023-12-13 23:55:37 · 4290 阅读 · 22 评论