python 处理dataframe中的时间字段

本文介绍如何在机器学习中处理时间字段,包括将时间字段转换为timestamp格式以便于使用sklearn库进行fit和predict操作,以及如何在绘图时将timestamp转换回时间字符串。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       在机器学习过程中,通常会通过pandas读取csv文件,保持成dadaframe格式,然而有时候需要对dataframe中的时间字段进行数据建模,比如时间格式为datetime,那么像一般操作dataframe的方式来操作时间字段会报错的,所以在使用sklearn库进行fit和predict的时候,通常要把时间字段首先转换为timestamp格式,在fit和predict之后,如果需要matplotlib绘图的时候,再把timestamp格式转换为时间字符串,比如2017-02-01 14:25:14,下面是我处理过的一段代码,希望可以帮到童鞋们!

doc_list1 = []
for i in doc1.iloc[:,1:2].values.tolist():               # 转换成了时间戳格式
    for j in i:
        dt = time.strptime(j, "%Y-%m-%d  %H:%M:%S")
        dt_new = time.mktime(dt)
        doc_list1.append(dt_new)

doc_list2 = []
for i in doc_list1:
    time_local = time.localtime(i)
    dt = time.strftime("%Y-%m-%d %H:%M:%S",time_local)
    dt1 = datetime.datetime.strptime(dt, "%Y-%m-%d  %H:%M:%S")
    doc_list2.append(dt1)
X1 = np.mat(doc_list1).T
y1= test_target1001
clf = AdaBoostRegressor(DecisionTreeRegressor(max_depth=5),n_estimators=1000, random_state=rng)
clf.fit(X1,y1)
yhat1 = clf.predict(X1)

补充一下:如果value不是datetime格式还需要进行转换

value = result.iloc[:,1]
list = []
for i in value:
        print(type(i.to_pydatetime().timetuple()),i)
        list.append(time.mktime(i.to_datetime().timetuple()))
print(list)





要批量修改PythonDataFrame字段名,可以使用Pandas库提供的rename()函数。这个函数可以接受一个字典参数,其中键是原始字段名,值是新的字段名。通过将所有需要修改的字段名及其对应的新名称组织成字典,然后传递给rename()函数,就可以实现批量修改字段名的操作。 以下是一个示例代码: ``` import pandas as pd # 创建一个示例DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9}) # 创建一个字段名字典,将需要修改的字段名及其新名称组织起来 new_names = {'A': 'Column1', 'B': 'Column2', 'C': 'Column3'} # 使用rename()函数批量修改字段名 df = df.rename(columns=new_names) ``` 在这个示例中,我们首先创建了一个示例DataFrame。然后,创建了一个字段名字典`new_names`,其中包含了需要修改的字段名及其新名称。最后,我们使用`rename()`函数将字段名字典传递给DataFrame来批量修改字段名。修改后的DataFrame将赋值给原始的DataFrame,以更新字段名。 需要注意的是,`rename()`函数是返回一个修改后的副本,并不会修改原始的DataFrame。如果想要在原地修改字段名,可以使用`inplace=True`参数,如下所示: ``` df.rename(columns=new_names, inplace=True) ``` 这样就可以直接在原始的DataFrame上进行字段名的批量修改。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [chatgpt赋能pythonPython修改字段名的实用技能](https://blog.youkuaiyun.com/suimodina/article/details/130980377)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wshzd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值