STM32——EEPROM

本文介绍如何使用STM32通过I2C接口与EEPROM(AT24C02)进行通信,包括配置I2C接口、实现数据读写及注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

STM32——EEPROM


宗旨:技术的学习是有限的,分享的精神是无限的。


一、I2C接口读写EEPROMAT24C02

       ——主模式,分别用作主发送器和主接收器。通过查询事件的方式来确保正常通信。

1I 2C接口初始化

        与其他对GPIO 复用的外设一样,它先调用了用户函数I2C_GPIO_Confi g() 配置好 I 2 C 所用的 I/O端口,然后再调用用户函数 I2C_Mode_Confi gu() 设置 I 2 C 的工作模式,并使能相关外设的时钟。

void I2C_EE_Init(void)
{
  I2C_GPIO_Config();
  I2C_Mode_Config();

  /* 根据头文件 i2c_ee.  14 h 中的定义来选择 EEPROM 要写入的地址 */
#ifdef EEPROM_Block0_ADDRESS /* 选择 EEPROM Block0 来写入 */
  EEPROM_ADDRESS = EEPROM_Block0_ADDRESS;
#endif
#ifdef EEPROM_Block1_ADDRESS  /* 选择 EEPROM Block1 来写入 */
  EEPROM_ADDRESS = EEPROM_Block1_ADDRESS;
#endif
#ifdef EEPROM_Block2_ADDRESS  /* 选择 EEPROM Block2 来写入 */
  EEPROM_ADDRESS = EEPROM_Block2_ADDRESS;
#endif
#ifdef EEPROM_Block3_ADDRESS  /* 选择 EEPROM Block3 来写入 */
  EEPROM_ADDRESS = EEPROM_Block3_ADDRESS;
#endif
}

1)EEPROM地址

        AT24C02:256字节,高四位硬性规定,最低位是R/W(传输方向选择位),在制作硬件时,我们可以根据需要改变的是地址位中的 A2、A1、A0 位。原理图上面全接地,所以它的地址为 :0xA0 或 0xA1。

2GPIO端口初始化

static void I2C_GPIO_Config(void)
{
  GPIO_InitTypeDef GPIO_InitStructure;

  /* 使能与 I2C1 有关的时钟 */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);

  /*  配置SCL SDA引脚速率输出方式 */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;  // 开漏输出
  GPIO_Init(GPIOB, &GPIO_InitStructure);
}


3I2C模式初始化

typedef struct
{
  uint32_t I2C_ClockSpeed;
  uint16_t I2C_Mode;
  uint16_t I2C_DutyCycle;
  uint16_t I2C_OwnAddress1;
  uint16_t I2C_Ack;
  uint16_t I2C_AcknowledgedAddress;
} I2C_InitTypeDef;

1I2C_Mode本成员是选择 I 2 C 的使用方式,有 I 2 C 模式(I2C_Mode_I2C)和SMBus 模式。(I2C_Mode_SMBusDevice、I2C_Mode_SMBusHost)

2I2C_DutyCycle设置的是 I 2 C 的 SCL 线时钟的占空比。在 STM32 的 I 2 C 占空比配置中有两个选择,分别为高电平时间和低电平时间之比为16 :9 (I2C_DutyCycle_16_9)和 2 :1( I2C_DutyCycle_2)。

3I2C_OwnAddress1本 成 员 配 置 的 是 STM32 的 I 2 C 设 备 自 己 的 地 址, 每个 连 接 到 I 2 C 总线上的设备都要有一个自己的地址,作为主机也不例外。这个地址可以被配置为 7 位和 10 位地址。我们把这个地址设置为 0x0A (自定义宏I2C1_OWN_ADDRESS7 的值)。

4I2C_Ack_Enable本成员关于 I 2 C 应答设置,设置为使能则每接收到一个字节就返回一个应答信号。配置为允许应答(I2C_Ack_Enable),这是绝大多数遵循 I 2 C标准的设备通信的要求,改为禁止应答 (I2C_Ack_Disable)往往会导致通信错误。

5I2C_AcknowledgeAddress本成员选择 I 2 C 的寻址模式是 7 位还是 10 位地址。这需要根据实际连接到 I 2C 总线上设备的地址进行选择。与 EEPROM 进行通信,使用的为 7 位寻址模式(I2C_AcknowledgedAddress_7bit)。

6I2C_ClockSpeed本成员设置的是 I 2 C 的传输速率,在调用初始化函数时,函数会根据我们输入的数值经过运算后把分频值写入到 I 2 C 的时钟控制寄存器。而我们写入的这个参数值不得高于 400 kHz。——400000

对结构体成员赋值完成后,我们调用库函数 I2C_Init() 根据我们的配置对 I 2 C 进行初始化, 并调用库函数 I2C_Cmd() 使能I 2 C 外设。 

static void I2C_Mode_Configu(void)
{
  I2C_InitTypeDef I2C_InitStructure;

  I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;  /* I2C 配置 */

  I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;  /* 高电平数据稳定,低电平数据变化 SCL  时钟线的占空比 */
  I2C_InitStructure.I2C_OwnAddress1 = I2C1_OWN_ADDRESS7;
  I2C_InitStructure.I2C_Ack = I2C_Ack_Enable ;
  I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;  /* I2C 的寻址模式 */
  I2C_InitStructure.I2C_ClockSpeed = I2C_Speed;  /* 通信速率 */

  I2C_Init(I2C1, &I2C_InitStructure);  /* I2C1 初始化 */
  I2C_Cmd(I2C1, ENABLE);  /* 使能 I2C1 */
}

二、对EEPROM的读写操作

void I2C_Test(void)
{
  u16 i;

  printf("写入的数据\n\r");

  for ( i = 0; i <= 255; i++ ) //填充缓冲
  {
    I2c_Buf_Write[i] = i;
    printf("0x%02X ", I2c_Buf_Write[i]);
    if (i % 16 == 15)
    {
      printf("\n\r");
    }
  }

  I2C_EE_BufferWrite( I2c_Buf_Write, EEP_Firstpage, 256);  //将 I2c_Buf_Write 中顺序递增的数据写入 EERPOM 中

  printf("\n\r 写成功\n\r");
  printf("\n\r 读出的数据\n\r");

  I2C_EE_BufferRead(I2c_Buf_Read, EEP_Firstpage, 256);  //将 EEPROM 读出数据顺序保持到 I2c_Buf_Read 中

//将 I2c_Buf_Read 中的数据通过串口打印
  for (i = 0; i < 256; i++)
  {
    if (I2c_Buf_Read[i] != I2c_Buf_Write[i])
    {
      printf("0x%02X ", I2c_Buf_Read[i]);
      printf("错误:I2C EEPROM 写入与读出的数据不一致\n\r");
      return;
    }
    printf("0x%02X ", I2c_Buf_Read[i]);
    if (i % 16 == 15)
    {
      printf("\n\r");
    }
  }
  printf("I2C(AT24C02)读写测试成功\n\r");
}

        功能是把数值 0 ~ 255 按顺序填入缓冲区数组,并通过串口打印到终端,接着通过用户函数I2C_EE_BufferWrite()把缓冲区的数据写入EEPROM。写入成功之后,利用用户函数 I2C_EE_BufferRead() 把数据读取出来,进行校验,判断数据是否被正确写入。 

void I2C_EE_BufferWrite(u8* pBuffer, u8 WriteAddr, u16 NumByteToWrite)
{
  u8 NumOfPage = 0, NumOfSingle = 0, Addr = 0, count = 0;

  Addr = WriteAddr % I2C_PageSize;
  count = I2C_PageSize - Addr;
  NumOfPage = NumByteToWrite / I2C_PageSize;
  NumOfSingle = NumByteToWrite % I2C_PageSize;

  /* If WriteAddr is I2C_PageSize aligned */
  if (Addr == 0)
  {
    /* If NumByteToWrite < I2C_PageSize */
    if (NumOfPage == 0)
    {
      I2C_EE_PageWrite(pBuffer, WriteAddr, NumOfSingle);
      I2C_EE_WaitEepromStandbyState();
    }
    /* If NumByteToWrite > I2C_PageSize */
    else
    {
      while (NumOfPage--)
      {
        I2C_EE_PageWrite(pBuffer, WriteAddr, I2C_PageSize);
        I2C_EE_WaitEepromStandbyState();
        WriteAddr += I2C_PageSize;
        pBuffer += I2C_PageSize;
      }

      if (NumOfSingle != 0)
      {
        I2C_EE_PageWrite(pBuffer, WriteAddr, NumOfSingle);
        I2C_EE_WaitEepromStandbyState();
      }
    }
  }
  /* If WriteAddr is not I2C_PageSize aligned */
  else
  {
    /* If NumByteToWrite < I2C_PageSize */
    if (NumOfPage == 0)
    {
      I2C_EE_PageWrite(pBuffer, WriteAddr, NumOfSingle);
      I2C_EE_WaitEepromStandbyState();
    }
    /* If NumByteToWrite > I2C_PageSize */
    else
    {
      NumByteToWrite -= count;
      NumOfPage = NumByteToWrite / I2C_PageSize;
      NumOfSingle = NumByteToWrite % I2C_PageSize;

      if (count != 0)
      {
        I2C_EE_PageWrite(pBuffer, WriteAddr, count);
        I2C_EE_WaitEepromStandbyState();
        WriteAddr += count;
        pBuffer += count;
      }

      while (NumOfPage--)
      {
        I2C_EE_PageWrite(pBuffer, WriteAddr, I2C_PageSize);
        I2C_EE_WaitEepromStandbyState();
        WriteAddr += I2C_PageSize;
        pBuffer += I2C_PageSize;
      }
      if (NumOfSingle != 0)
      {
        I2C_EE_PageWrite(pBuffer, WriteAddr, NumOfSingle);
        I2C_EE_WaitEepromStandbyState();
      }
    }
  }
}

        AT24C02 的 EEPROM 分为 32 页,每页可存储8个字节的数据,若在同一页写入超过 8 字节,则超过的部分会被写在该页的起始地址,这样部分数据会被覆盖。为了把连续的缓冲区数组按页写入 EEPROM,就需要对缓冲区进入分页处理。I2C_EE_BufferWrite() 函数根据我们输入的缓冲区大小参数 NumByteToWrite,计算出我们需要写入多少页,并计算写入位置。分页处理好之后,调用 I2C_EE_PageWrite() 函数,这个函数是与 EEPROM 进行 I 2 C通信的最底层函数,它与 STM32 的 I 2 C 库函数使用密切相关。

void I2C_EE_PageWrite(u8* pBuffer, u8 WriteAddr, u8 NumByteToWrite)
{
  while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY));

  I2C_GenerateSTART(I2C1, ENABLE);  /* Send START condition */
  while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));  /* Test on EV5 and clear it */


  I2C_Send7bitAddress(I2C1, EEPROM_ADDRESS, I2C_Direction_Transmitter);  /* Send EEPROM address for write */
  while (!I2C_CheckEvent(I2C1,  I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));  /* Test on EV6 and clear it */


  I2C_SendData(I2C1, WriteAddr);  /* Send the EEPROM's internal address to write to */
  while (! I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));  /* Test on EV8 and clear it */

  while (NumByteToWrite--)  /* While there is data to be written */
  {
    I2C_SendData(I2C1, *pBuffer);    /* Send the current byte */
    pBuffer++;    /* Point to the next byte to be written */
    while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED) );    /* Test on EV8 and clear it */
  }

  I2C_GenerateSTOP(I2C1, ENABLE);  /* Send STOP condition */
}

1EEPROM页写入时序

这个页写入的函数是根据 EEPROM 的页写入时序来编写的。

调用库函数I2C_Generate START() 产生 I 2 C 的通信起始信号 S。

调用库函数I2C_Send7bitAddress() 把前面条件编译中赋值的变量EEPROM_ADDRESS 地 址 通 过 I 2 C1接口发送出去,数据传输方向为STM32的I2 C发送数据(I2C_Direction_Transmitter)。

调 用 库 函 数I2C_SendData() , 请 注 意 这 个 库 函 数 的 输 入 参 数 为WriteAddr,根据 EEPROM 的页写入时序,发送完 I 2 C 的地址后的第一个数据并不就是要写入 EEPROM 的数据, EEPROM 对这个数据解释为将要对存储矩阵写入的地址,这个参数 WriteAddr 是在我们调用 I2C_EE_PageWrite() 函数时作为参数输入的。这个库函数实际上是把数据传输到数据寄存器,再由 I 2 C 模块根据 I 2 C 协议发送出
去。

调用I2C_SendData() 函数,向 EEPROM 发送要写入的数据,根据EEPROM 的页写入时序,这些数据将会被写入到前面发送的页地址中,若连续写入超过一页的最大字节数(8个),则多出来的数据会重新从该页的起始地址连续写入,覆盖前面的数据。

调用库函数I2C_Generate STOP() 产生 I 2 C 传输结束信号,完成一次 I2 C 通信。

 

2I2C事件检测

        在 I 2 C的通信过程中,会产生一系列的事件,出现事件后在相应的寄存器中会产生标志位。

         若发出了起始信号,会产生事件 5(EV5),即 STM32 的 I 2 C成为主机模式;继续发送完 I 2C 设备寻址并得到应答后,会产生 EV6,即 STM32 的 I 2C 成为数据发送端;之后发送数据完成会产生 EV8 等。我们在做出 I 2 C 通信操作时,可以通过循环调用库函数I2C_CheckEvent()进行事件查询,以确保上一操作完成后才进行下一操作。

 

3、等到EEPROM内部写入完成

void I2C_EE_WaitEepromStandbyState(void)
{
  vu16 SR1_Tmp = 0;
  do
  {
    I2C_GenerateSTART(I2C1, ENABLE);    /* Send START condition */
    SR1_Tmp = I2C_ReadRegister(I2C1, I2C_Register_SR1);    /* Read I2C1 SR1 register */
    I2C_Send7bitAddress(I2C1, EEPROM_ADDRESS,  I2C_Direction_Transmitter);    /* Send EEPROM address for write */
  }
  while (!(I2C_ReadRegister(I2C1, I2C_Register_SR1) & 0x0002));

  I2C_ClearFlag(I2C1, I2C_FLAG_AF);  /* Clear AF flag */
  I2C_GenerateSTOP(I2C1, ENABLE);  /* STOP condition */
}

        利用了 EEPROM 在接收完数据后,启动内部周期写入数据的时间内不会对主机的请求做出应答的特性。所以利用这个函数循环发送起始信号,若检测到 EEPROM 的应答,则说明 EEPROM 已经完成上一步的数据写入,进入 Standby 状态,可以进行下一步的操作了。

 

 三、EEPROM读

void I2C_EE_BufferRead(u8* pBuffer, u8 ReadAddr, u16 NumByteToRead)
{
//*((u8 *)0x4001080c) |=0x80;
  while (I2C_GetFlagStatus(I2C1, I2C_FLAG_BUSY)); // Added by Najoua

  /* Send START condition */
  I2C_GenerateSTART(I2C1, ENABLE);
//*((u8 *)0x4001080c) &=~0x80;

  /* Test on EV5 and clear it */
  while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));

  /* Send EEPROM address for write */
  I2C_Send7bitAddress(I2C1, EEPROM_ADDRESS, I2C_Direction_Transmitter);

  /* Test on EV6 and clear it */
  while (!I2C_CheckEvent(I2C1,
                         I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));

  /* Clear EV6 by setting again the PE bit */
  I2C_Cmd(I2C1, ENABLE);

  /* Send the EEPROM's internal address to write to */
  I2C_SendData(I2C1, ReadAddr);

  /* Test on EV8 and clear it */
  while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED));

  /* Send STRAT condition a second time */
  I2C_GenerateSTART(I2C1, ENABLE);

  /* Test on EV5 and clear it */
  while (!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));

  /* Send EEPROM address for read */
  I2C_Send7bitAddress(I2C1, EEPROM_ADDRESS, I2C_Direction_Receiver);

  /* Test on EV6 and clear it */
  while (!I2C_CheckEvent(I2C1,
                         I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED));

  /* While there is data to be read */
  while (NumByteToRead)
  {
    if (NumByteToRead == 1)
    {
      /* Disable Acknowledgement */
      I2C_AcknowledgeConfig(I2C1, DISABLE);

      /* Send STOP Condition */
      I2C_GenerateSTOP(I2C1, ENABLE);
    }

    /* Test on EV7 and clear it */
    if (I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_RECEIVED))
    {
      /* Read a byte from the EEPROM */
      *pBuffer = I2C_ReceiveData(I2C1);

      /* Point to the next location where the byte read will be
      saved */
      pBuffer++;

      /* Decrement the read bytes counter */
      NumByteToRead--;
    }
  }

  /* Enable Acknowledgement to be ready for another reception */
  I2C_AcknowledgeConfig(I2C1, ENABLE);
}

四、使用 I2 C读写EEPROM流程总结

(1)配置 I/O 端口,确定并配置 I 2 C 的模式,使能 GPIO 和 I 2 C 时钟。

(2)写 :

① 检测 SDA 是否空闲。

② 按 I 2 C 协议发出起始信号。

③ 发出 7 位器件地址和写模式。

④ 要写入的存储区首地址。

⑤ 用页写入方式或字节写入方式写入数据。

⑥ 发送 I 2 C 通信结束信号。

每个操作之后要检测“事件”是否成功。写完后检测 EEPROM 是否进入Standby状态。

(3)读 :

① 检测 SDA 是否空闲。

② 按 I 2 C 协议发出起始信号。

③ 发出 7 位器件地址和写模式(伪写)。

④ 发出要读取的存储区首地址。

⑤ 重发起始信号。

⑥ 发出 7 位器件地址和读模式。

⑦ 接收数据。

类似写操作,每个操作之后要检测“事件”是否成功。

 

06-18
<think>我们正在讨论EEPROM(电可擦可编程只读存储器)。根据引用,EEPROM是一种非易失性存储器,可以通过电子方式擦除和重新编程。它不需要紫外线擦除(与EPROM不同),并且可以逐字节擦写。然而,它的写入速度比RAM慢,成本也更高,因此不适合作为主存储器使用。EEPROM在计算机系统和编程中常用于存储需要持久保存但又可能偶尔更新的配置数据,例如BIOS设置、嵌入式系统的参数、校准数据等。在编程中,对EEPROM的操作通常包括读、写和擦除。不同的微控制器或系统会提供相应的库函数或底层驱动来访问EEPROM。下面我们以Arduino为例,展示如何使用EEPROM:```cpp#include<EEPROM.h>voidsetup(){//写入数据到EEPROM的地址0EEPROM.write(0,'A');//从EEPROM的地址0读取数据charvalue=EEPROM.read(0);//现在value的值应该是'A'}voidloop(){}```在这个例子中,我们使用Arduino的EEPROM库向地址0写入一个字符,然后读取出来。注意,EEPROM有写入次数限制(通常为10万次左右),因此应避免频繁写入。§§相关问题§§1.EEPROM与Flash存储器的区别是什么?2.EEPROM的写入寿命是多少?如何延长其使用寿命?3.在嵌入式系统中,如何安全地使用EEPROM存储数据?4.EEPROM的读写速度如何?与其他存储器相比有什么差异?</think>### EEPROM 在计算机内存与编程中的应用 EEPROM(Electrically Erasable Programmable Read-Only Memory)是一种**非易失性存储器**,在计算机系统和编程中扮演重要角色: #### **核心特性** 1. **电擦写能力** - 无需物理移除或紫外线照射,可通过特定电压直接擦除和重写数据[^1][^3] - 支持**字节级擦写**(区别于Flash的块擦除) 2. **持久存储** - 断电后数据保留(典型寿命10-40年) - 可重复擦写约$10^5$次(10万次)[^2] 3. **性能权衡** - 写入速度慢(毫秒级,比RAM慢$10^3$倍) - 读取速度接近NOR Flash #### **典型应用场景** ```mermaid graph LR A[EEPROM应用] --> B[BIOS/UEFI固件] A --> C[嵌入式设备配置] A --> D[物联网传感器校准] A --> E[外设参数存储] ``` #### **编程操作示例(Arduino)** ```cpp #include <EEPROM.h> void setup() { // 写入数据到地址0 EEPROM.write(0, 123); // 读取数据(延时确保写入完成) delay(100); int value = EEPROM.read(0); // value=123 } void loop() {} ``` #### **使用注意事项** 1. **磨损均衡** - 避免频繁写入同一地址 - 采用地址轮换策略延长寿命 ```python # 伪代码:地址轮换示例 current_addr = (last_addr + 1) % EEPROM_SIZE write_data(current_addr, new_value) ``` 2. **数据验证** - 添加CRC校验防止数据损坏 - 重要数据双备份存储 3. **功耗管理** - 写入时需稳定供电(防止意外中断) - 电池供电设备需控制写入频率 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值