PBR文档链接
理论基础
PBR概念
- PBR基于物理的渲染(Physically Based Rendering),它指的是一些在不同程度上都基于与现实世界的物理原理更相符的基本理论所构成的渲染技术的集合。相比Blinn-Pong光照算法更真实一些。
- 基于物理的渲染仍然只是对基于物理原理的现实世界的一种近似。
微平面模型
- 所有的PBR技术都基于微平面理论。这项理论认为,达到微观尺度之后任何平面都可以用被称为微平面(Microfacets)的细小镜面来进行描绘。根据平面粗糙程度的不同,这些细小镜面的取向排列可以相当不一致:入射光线更趋向于向完全不同的方向发散(Scatter)开来,进而产生出分布范围更广泛的镜面反射。
- 我们只有假设一个粗糙度(Roughness)参数,然后用统计学的方法来概略的估算微平面的粗糙程度。基于一个平面的粗糙度来计算出某个向量的方向与微平面平均取向方向一致的概率。这个向量便是位于光线向量l和视线向量v之间的中间向量(Halfway Vector)。
能量守恒
-
微平面近似法使用了这样一种形式的能量守恒(Energy Conservation):出射光线的能量永远不能超过入射光线的能量(发光面除外)。
-
当一束光线碰撞到一个表面的时候,它就会分离成一个折射部分和一个反射部分。反射部分就是会直接反射开来而不会进入平面的那部分光线,这就是我们所说的镜面光照。而折射部分就是余下的会进入表面并被吸收的那部分光线,这也就是我们所说的漫反射光照。
-
因为当光线接触到一个表面的时候折射光是不会立即就被吸收的。光线实际上可以被认为是一束没有耗尽就不停向前运动的能量,而光束是通过碰撞的方式来消耗能量。
-
-
一般来说,并非所有能量都会被全部吸收,而光线也会继续沿着(基本上)随机的方向发散,然后再和其他的粒子碰撞直至能量完全耗尽或者再次离开这个表面。
-
在基于物理的渲染之中我们进行了简化,假设对平面上的每一点所有的折射光都会被完全吸收而不会散开。
-
反射光与折射光它们二者之间是互斥的关系。无论何种光线,其被材质表面所反射的能量将无法再被材质吸收。因此,诸如折射光这样的余下的进入表面之中的能量正好就是我们计算完反射之后余下的能量。
float kS = calculateSpecularComponent(...); // 反射/镜面 部分
float kD = 1.0 - ks; // 折射/漫反射 部分
反射率方程
-
引入了一种被称为渲染方程(Render Equation)的东西。基于物理的渲染所坚定的遵循的是一种被称为反射率方程(The Reflectance Equation)的渲染方程的特化版本。
-
辐射度量学(Radiometry):用来度量电磁场辐射(包括可见光)的手段。有很多种辐射度量(radiometric quantities)可以用来测量曲面或者某个方向上的光,但是我们将只会讨论其中和反射率方程有关的一种。
辐射通量
- 辐射通量Φ表示的是一个光源所输出的能量,以瓦特为单位。光是由多种不同波长的能量所集合而成的,而每种波长则与一种特定的(可见的)颜色相关。
- 直接将这种对不同波长的计量作为参数输入计算机图形有一些不切实际,因此我们通常不直接使用波长的强度而是使用三原色编码,也就是RGB
立体角
- 立体角用ω表示,它可以为我们描述投射到单位球体上的一个截面的大小或者面积。投射到这个单位球体上的截面的面积就被称为立体角(Solid Angle),你可以把立体角想象成为一个带有体积的方向:
辐射强度
- 辐射强度(Radiant Intensity)表示的是在单位球面上,一个光源向每单位立体角所投送的辐射通量。举例来说,假设一个全向光源向所有方向均匀的辐射能量,辐射强度就能帮我们计算出它在一个单位面积(立体角)内的能量大小。(从外部向球心)
辐射率
-
一个拥有辐射强度Φ的光源在单位面积A,单位立体角ω上的辐射出的总能量。
辐射率是辐射度量学上表示一个区域平面上光线总量的物理量,它受到入射(Incident)光线与平面法线间的夹角θ的余弦值cosθ的影响:当直接辐射到平面上的程度越低时,光线就越弱,而当光线完全垂直于平面时强度最高。这和我们在前面的基础光照教程中对于漫反射光照的概念相似,其中cosθ就直接对应于光线的方向向量和平面法向量的点积float cosTheta = dot(lightDir, N);
-
如果我们把立体角ω和面积A看作是无穷小的,那么我们就能用辐射率来表示单束光线穿过空间中的一个点的通量。这就使我们可以计算得出作用于单个(片段)点上的单束光线的辐射率,我们实际上把立体角ω转变为方向向量ω然后把面A转换为点p。
基于反射率的半球邻域
-
基于反射率公式是围绕所有入射辐射率的总和,也就是辐照度来计算的,所以我们需要计算的就不只是是单一的一个方向上的入射光,而是一个以点p为球心的半球领域Ω内所有方向上的入射光。一个半球领域(Hemisphere)可以描述为以平面法线n为轴所环绕的半个球体:
-
使用积分运算包含了半球领域Ω内所有入射方向上的dωi 。积分运算的值等于一个函数曲线的面积,它的计算结果要么是解析解要么就是数值解。由于渲染方程和反射率方程都没有解析解,我们将会用离散的方法来求得这个积分的数值解。
- 辐射通量Φ表示的是一个光源所输出的能量,以瓦特为单位。光是由多种不同波长的能量所集合而成的,而每种波长则与一种特定的(可见的)颜色相关。
BRDF
BRDF:双向反射分布函数,它接受入射光方向ωi,出射(观察)方向ωo,平面法线n以及一个用来表示微平面粗糙程度的参数a作为函数的输入参数。
-
BRDF可以近似的求出每束光线对一个给定了材质属性的平面上最终反射出来的光线所作出的贡献程度。(举例来说,如果一个平面拥有完全光滑的表面(比如镜面),那么对于所有的入射光线ωi(除了一束以外)而言BRDF函数都会返回0.0 ,只有一束与出射光线ωo拥有相同(被反射)角度的光线会得到1.0这个返回值。)
-
现在已经有很好几种BRDF都能近似的得出物体表面对于光的反应,但是几乎所有实时渲染管线使用的都是一种被称为Cook-Torrance BRDF模型。
-
漫反射部分:这里的Kd是早先提到过的入射光线中被折射部分的能量所占的比率,而ks是被反射部分的比率。BRDF的左侧表示的是漫反射部分,这里用Flambert来表示。它被称为Lambertian漫反射,这和我们之前在漫反射着色中使用的常数因子类似,用如下的公式来表示:
PS:之前我们是用表面法向量与光照方向向量进行点乘,然后再将结果与平面颜色相乘得到漫反射参数。点乘依然还在,但是却不在BRDF之内,而是转变成为了Lo积分末公式末尾处的n⋅ωi 。 -
镜面反射部分
-
Cook-Torrance BRDF的镜面反射部分包含三个函数,此外分母部分还有一个标准化因子 。字母D,F与G分别代表着一种类型的函数,各个函数分别用来近似的计算出表面反射特性的一个特定部分:
- 正态分布函数:估算在受到表面粗糙度的影响下,取向方向与中间向量一致的微平面的数量。这是用来估算微平面的主要函数。
- 几何函数:描述了微平面自成阴影的属性。当一个平面相对比较粗糙的时候,平面表面上的微平面有可能挡住其他的微平面从而减少表面所反射的光线。
- 菲涅尔方程:菲涅尔方程描述的是在不同的表面角下表面所反射的光线所占的比率。
-
正态分布函数:正态分布函数D(镜面分布),从统计学上近似的表示了与某些(中间)向量h取向一致的微平面的比率。假设给定向量h,如果我们的微平面中有35%与向量h取向一致,则正态分布函数或者说NDF将会返回0.35。可以从统计学上来估算微平面的总体取向度。
float D_GGX_TR(vec3 N, vec3 H, float a) { float a2 = a*a; float NdotH = max(dot(N, H), 0.0); float NdotH2 = NdotH*NdotH; float nom = a2; float denom = (NdotH2 * (a2 - 1.0) + 1.0); denom = PI * denom * denom; return nom / denom; }
-
几何函数:从统计学上近似的求得了微平面间相互遮蔽的比率,这种相互遮蔽会损耗光线的能量。
几何函数采用一个材料的粗糙度参数作为输入参数,粗糙度较高的表面其微平面间相互遮蔽的概率就越高。
这里的k是α基于几何函数是针对直接光照还是针对IBL光照的重映射(Remapping) :
为了有效的估算几何部分,需要将观察方向(几何遮蔽(Geometry Obstruction))和光线方向向量(几何阴影(Geometry Shadowing))都考虑进去。我们可以使用史密斯法(Smith’s method)来把两者都纳入其中:
float GeometrySchlickGGX(float NdotV, float k) { float nom = NdotV; float denom = NdotV * (1.0 - k) + k; return nom / denom; } float GeometrySmith(vec3 N, vec3 V, vec3 L, float k) { float NdotV = max(dot(N, V), 0.0); float NdotL = max(dot(N, L), 0.0); float ggx1 = GeometrySchlickGGX(NdotV, k); float ggx2 = GeometrySchlickGGX(NdotL, k); return ggx1 * ggx2; }
-
菲涅尔方程:菲涅尔(Freh-nel)方程描述的是被反射的光线对比光线被折射的部分所占的比率,这个比率会随着我们观察的角度不同而不同。利用这个反射比率和能量守恒原则,我们可以直接得出光线被折射的部分以及光线剩余的能量。
任何物体或者材质表面都有一个基础反射率(Base Reflectivity),但是如果以一定的角度往平面上看的时候所有反光都会变得明显起来。你可以自己尝试一下,用垂直的视角观察你自己的木制/金属桌面,此时一定只有最基本的反射性。但是如果你从近乎90度(译注:应该是指和法线的夹角)的角度观察的话反光就会变得明显的多。如果从理想的90度视角观察,所有的平面理论上来说都能完全的反射光线。
在这里插入图片描述
菲涅尔方程还存在一些细微的问题。其中一个问题是Fresnel-Schlick近似仅仅对电介质或者说非金属表面有定义。对于导体(Conductor)表面(金属),使用它们的折射指数计算基础折射率并不能得出正确的结果,这样我们就需要使用一种不同的菲涅尔方程来对导体表面进行计算。由于这样很不方便,所以我们预先计算出平面对于法向入射(F0)的反应(处于0度角,好像直接看向表面一样)然后基于相应观察角的Fresnel-Schlick近似对这个值进行插值,用这种方法来进行进一步的估算。这样我们就能对金属和非金属材质使用同一个公式了。
//如果是金属表面的话就需要对基础反射率添加色彩。 vec3 F0 = vec3(0.04); F0 = mix(F0, surfaceColor.rgb, metalness);// vec3 fresnelSchlick(float cosTheta, vec3 F0) { return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0); }
-
编写PBR材质
PBR渲染管线所需要的每一个表面参数都可以用纹理来定义或者建模。使用纹理可以让我们逐个片段的来控制每个表面上特定的点对于光线是如何响应的:不论那个点是金属的,粗糙或者平滑,也不论表面对于不同波长的光会有如何的反应。
反照率:反照率(Albedo)纹理为每一个金属的纹素(Texel)(纹理像素)指定表面颜色或者基础反射率。这和我们之前使用过的漫反射纹理相当类似,不同的是所有光照信息都是由一个纹理中提取的。漫反射纹理的图像当中常常包含一些细小的阴影或者深色的裂纹,而反照率纹理中是不会有这些东西的。它应该只包含表面的颜色(或者折射吸收系数)。
法线:法线贴图纹理和我们之前在法线贴图教程中所使用的贴图是完全一样的。法线贴图使我们可以逐片段的指定独特的法线,来为表面制造出起伏不平的假象。
金属度:金属(Metallic)贴图逐个纹素的指定该纹素是不是金属质地的。根据PBR引擎设置的不同,美术师们既可以将金属度编写为灰度值又可以编写为1或0这样的二元值。
粗糙度:粗糙度(Roughness)贴图可以以纹素为单位指定某个表面有多粗糙。采样得来的粗糙度数值会影响一个表面的微平面统计学上的取向度。一个比较粗糙的表面会得到更宽阔更模糊的镜面反射(高光),而一个比较光滑的表面则会得到集中而清晰的镜面反射。某些PBR引擎预设采用的是对某些美术师来说更加直观的光滑度(Smoothness)贴图而非粗糙度贴图,不过这些数值在采样之时就马上用(1.0 – 光滑度)转换成了粗糙度。
AO:环境光遮蔽(Ambient Occlusion)贴图或者说AO贴图为表面和周围潜在的几何图形指定了一个额外的阴影因子。比如如果我们有一个砖块表面,反照率纹理上的砖块裂缝部分应该没有任何阴影信息。然而AO贴图则会把那些光线较难逃逸出来的暗色边缘指定出来。在光照的结尾阶段引入环境遮蔽可以明显的提升你场景的视觉效果。网格/表面的环境遮蔽贴图要么通过手动生成,要么由3D建模软件自动生成。