【一种多目标强化学习和策略自适应的通用算法】

本文提出了一种新的多目标强化学习(MORL)算法,旨在实现对新任务的少量适应。该算法学习单一策略网络,优化整个偏好空间,允许在不同偏好下执行最优策略。实验表明,该方法在多个领域显著优于传统方法,包括对话策略学习和超级马里奥游戏。此外,该算法还能自动推断新任务的隐藏偏好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation
一种多目标强化学习和策略自适应的通用算法

Abstract 摘要

        We introduce a new algorithm for multi-objective reinforcement learning (MORL) with linear preferences, with the goal of enabling few-shot adaptation to new tasks. In MORL, the aim is to learn policies over multiple competing objectives whose relative importance (preferences) is unknown to the agent. While this alleviates dependence on scalar reward design, the expected return of a policy can change significantly with varying preferences, making it challenging to learn a single model to produce optimal policies under different preference conditions. We propose a generalized version of the Bellman equation to learn a single parametric representation for optimal policies over the space of all possible preferences. After an initial learning phase, our agent can execute the optimal policy under any given preference, or automatically infer an underlying preference with very few samples. Experiments across four different domains demonstrate the effectiveness of our approach.1
        我们引入了一种新的
具有线性偏好的多目标强化学习(MORL)算法,其目标是实现对新任务的少量适应。在MORL中,目标是学习多个竞争目标的策略,这些目标的相对重要性(偏好)对智能体来说是未知的。虽然这简化了对标量奖励设计的依赖,但策略的预期回报可能会随着偏好的变化而发生显着变化,这使得学习单个模型以在不同偏好条件下产生最优政策变得具有挑战性。我们提出了一个广义版本的贝尔曼方程学习一个单一的参数表示的所有可能的偏好空间的最优策略。在初始学习阶段之后,我们的代理可以在任何给定的偏好下执行最优策略,或者用很少的样本自动推断出潜在的偏好。在四个不同领域的实验证明了我们的方法的有效性。

1 Introduction

        In recent years, there has been increased interest in the paradigm of multi-objective reinforcement learning (MORL), which deals with learning control policies to simultaneously optimize over several criteria. Compared to traditional RL, where the aim is to optimize for a scalar reward, the optimal policy in a multi-objective setting depends on the relative preferences among competing criteria. For example, consider a virtual assistant (Figure 1) that can communicate with a human to perform a specific task (e.g., provide weather or navigation information). Depending on the user’s relative preferences between aspects like success rate or brevity, the agent might need to follow completely different strategies. If success is all that matters (e.g., providing an accurate weather report), the agent might provide detailed responses or ask several follow-up questions. On the other hand, if brevity is crucial (e.g., while providing turn-by-turn guidance), the agent needs to find the shortest way to complete the task. In traditional RL, this is often a fixed choice made by the designer and incorporated into the scalar reward. While this suffices in cases where we know the preferences of a task beforehand, the learned policy is limited in its applicability to scenarios with different preferences. The MORL framework provides two distinct advantages – (1) reduced dependence on scalar reward design to combine different objectives, which is both a tedious manual task and can lead to unintended consequences [1], and (2) dynamic adaptation or transfer to related tasks with different preferences.
        近年来,人们对多目标强化学习(MORL)范式的兴趣越来越大,MORL涉及学习控制策略以同时优化多个标准。与传统的RL相比,其目标是优化标量奖励,多目标设置中的最优策略取决于竞争标准之间的相对偏好。

        例如,考虑可以与人类通信以执行特定任务(例如,提供天气或导航信息)。根据用户在成功率或简洁性等方面的相对偏好,智能体可能需要遵循完全不同的策略。如果成功是最重要的(例如,提供准确的天气报告),智能体可能会提供详细的响应或提出几个后续问题。另一方面,如果简洁是至关重要的(例如,在提供逐向引导的同时),智能体需要找到完成任务的最短路径。

        在传统的RL中,这通常是设计者做出的固定选择,并被纳入标量奖励中。虽然这在我们事先知道任务偏好的情况下就足够了,但学习的策略在具有不同偏好的场景中的适用性有限。MORL框架提供了两个明显的优势-(1)减少了对标量奖励设计的依赖,以组合联合收割机不同的目标,这既是一项繁琐的手动任务,也可能导致意想不到的后果[1],以及(2)动态适应或转移到具有不同偏好的相关任务。

 Figure 1:Task-oriented dialogue policy learning is a real-life example of unknown linear preference scenario. Users may expect either briefer dialogue or more informative dialogue depending on the task.
图1:面向任务的对话策略学习是未知线性偏好场景的一个真实例子。用户可能期望更简短的对话或更多的信息对话,这取决于任务。

        However, learning policies over multiple preferences under the MORL setting has proven to be quite challenging, with most prior work using one of two strategies [2]. The first is to convert the multi-objective problem into a single-objective one through various techniques [3456] and use traditional RL algorithms. These methods only learn an ‘average’ policy over the space of preferences and cannot be tailored to be optimal for specific preferences. The second strategy is to compute a set of optimal policies that encompass the entire space of possible preferences in the domain [789]. The main drawback of these approaches is their lack of scalability – the challenge of representing a Pareto front (or its convex approximation) of optimal policies is handled by learning several individual policies, which can grow significantly with the size of the domain.
        然而,MORL设置下的多偏好学习策略已被证明是相当具有挑战性的,大多数先前的工作使用两种策略之一[2]。第一种是通过各种技术[3,4,5,6]将
多目标问题转换为单目标问题,并使用传统的RL算法。

### 自适应资源分配算法概述 自适应资源分配算法一种动态优化方法,用于在不确定环境中高效地分配有限资源。该类算法通过实时监测系统的状态并调整资源分配策略,从而满足特定的目标函数或约束条件[^1]。 #### 关键概念 自适应资源分配的核心在于设计一种机制,能够根据环境变化自动调节分配比例或优先级。这种机制通常依赖于反馈控制系统的思想,类似于自适应PID控制器的设计思路。具体来说: - **目标函数定义**:明确需要优化的性能指标(如吞吐量最大化、延迟最小化等)。 - **反馈信号获取**:收集系统运行中的实际数据作为输入。 - **参数调整逻辑**:基于当前状态与期望状态之间的偏差,更新资源分配方案。 以下是实现自适应资源分配的一个通用框架示例: ```matlab function updated_allocation = adaptive_resource_allocation(current_state, target_state, resources) % 参数初始化 Kp = 0.5; Ki = 0.1; Kd = 0.2; error = target_state - current_state; integral_error = integral(error); derivative_error = diff(error); % 调整资源分配权重 adjustment_factor = Kp * error + Ki * integral_error + Kd * derivative_error; % 更新资源分配向量 updated_allocation = resources + adjustment_factor; % 确保资源总量守恒 total_resources = sum(resources); updated_allocation = (updated_allocation / sum(updated_allocation)) * total_resources; end ``` 上述代码展示了如何利用类似PID控制的方法来调整资源分配的比例。其中 `Kp`、`Ki` `Kd` 是可调增益系数,分别对应比例项、积分项微分项的作用强度。 #### 示例应用领域 1. **云计算平台调度**:根据不同虚拟机的工作负载情况动态分配CPU/GPU资源。 2. **网络带宽管理**:依据流量需求的变化重新配置链路容量。 3. **能源管理系统**:平衡发电侧供应能力与用电端消耗水平。 #### 学术研究方向建议 对于深入学习此主题感兴趣的读者可以关注以下几个方面: - 基于强化学习自适应资源分配模型构建; - 多目标优化条件下权衡不同利益主体诉求的技术路线探讨; - 面向新兴应用场景(如边缘计算、物联网设备群组协作)的新颖架构探索。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

资源存储库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值