代码如下:
import random
from sklearn import datasets #导入数据集
from sklearn.neighbors import KNeighborsClassifier as KNN #导入KNN模型
from sklearn.model_selection import train_test_split #导入数据分离包 用法:X_train,X_test, y_train, y_test = train_test_split(train_data, train_target, test_size, random_state, shuffle)
import numpy
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
data=datasets.load_breast_cancer()
#print(data)
#key=data.keys()
#print(key) #dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
sample=data['data']
#print(sample)
#print(sample.shape)#(569, 30) 一共569行 每行数据都有30个特征
#print(data['target'])
target=data['target']
#print(data['target_names'])#['malignant' 'benign']三种类型分别对应:0,1
b={0:'malignant',1:'benign'}#简单构造一个类型和标签对应的字典,为了后面使用的方便
#数据分离
traindata,testdata,traintarget,testtarget = train_test_split(sample,target,test_size=0.1,random_state=2020)
print(tr

博客直接给出使用knn解决二分类问题的代码,还展示了优化方法的图。若想了解具体使用方法,可点击相关链接查看kNN算法在sklearn鸢尾花数据集的实战实现。
最低0.47元/天 解锁文章
1445

被折叠的 条评论
为什么被折叠?



