Pyspark MLlib example of Word2Vec

本文讲述了在使用SparkMLlib中的Word2Vec进行特征提取时,对输出向量的深入理解,揭示其实质是单层神经网络训练后隐藏层的加权值。参考链接:freecodecamp.org教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

调试Spark MLlib自带的官方特征提取示例时,对于Word2Vec输出的结果不是很明白,参考其他资料后了解了输出结果的含义,记录一下:

Word2Vec输出的结果如下:

结果向量说明:

Word2Vec is a ML method of building a language model based on Deep Learning ideas.But a neural network that is used here is rather shallow(consists of only one hidden layer).

Behind the scenes we are actually training a simple neural network with a single hidden layer.But we are actually not going to use the neural network after training.Instead,the goal is to learn the weights of the hidden layer.These weights are essentially the word vectors that we're trying to learn.

结论:

word2Vec输出的向量实际是其背后三层神经网络隐藏层的加权值

参考:How to get started with Word2Vec — and then how to make it work (freecodecamp.org)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值