机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)
案例介绍
桑坦德银行(Santander Bank
)创立于1857年,是西班牙最大银行、欧洲第二大银行。它的业务和服务包括零售银行、商业银行、投资银行、私人银行、保险、资产管理、私人投资等。本案例根据桑坦德银行提供的客户数据,预测客户未来的交易行为。
-
代码实现:Python
-
数据来源: Santander
数据描述
隐去了客户个人信息的数据集,包括数值特征变量、二值target
变量、字符型ID_code
变量。我们的任务是预测检验集里的target
值。
加载包
导入库
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from catboost import CatBoostClassifier,Pool
from IPython.display import display
import matplotlib.patches as patch
import matplotlib.pyplot as plt
from sklearn.svm import NuSVR
from scipy.stats import norm
from sklearn import svm
import lightgbm as lgb
import xgboost as xgb
import seaborn as sns
import pandas as pd
import numpy as np
import warnings
import time
import glob
import sys
import os
import gc
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from IPython.display import display
import matplotlib.patches as patch
import matplotlib.pyplot as plt
from scipy.stats import norm
import seaborn as sns
import pandas as pd
import numpy as np
import warnings
import time
import glob
import sys
import os
import gc
设置
# for get better result chage fold_n to 5
fold_n=5
folds = StratifiedKFold(n_splits=