卡尔曼滤波算法及其python实现

本文详细介绍了卡尔曼滤波算法的原理及应用,通过Python代码演示了算法的具体实现过程。从生成带噪声的传感器观测值,到定义状态向量、状态协方差矩阵等关键步骤,再到卡尔曼滤波的预测和更新过程,全面解析了卡尔曼滤波在处理动态系统状态估计中的作用。

卡尔曼滤波算法及其python实现

算法原理

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

python实现

# KF algorith demo by Leo
# 2020.01.06
# ZJG CAMPUS,ZJU

import numpy as np
import matplotlib.pyplot as plt
 

'''
生成带噪声的传感器观测值Z
Z中一共包含500个samples,第k个sample代表k时刻传感器的读数
假设只对机器人位置进行传感器观测,并且只用距离表示位置
因此,Z中只有一个观测变量,即机器人的位置,这个位置一维数据表示
'''
# 生成不带噪声的数据
Z_raw = [i for i in range(500)]
# 创建一个均值为0,方差为1的高斯噪声,共有500个samples,精确到小数点后两位
noise = np.round(np.random.normal(0, 
评论 4
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值