
数学理论
文章平均质量分 79
wolenski
这个作者很懒,什么都没留下…
展开
-
方向导数和梯度
之前用过几次梯度下降算法来求解一些优化问题,但对梯度的具体意义并不是很理解。前一段时间翻了一遍高教的《简明微积分》,对梯度概念总算有了些理解,在这记录一下。推荐下《简明微积分》这本书,我向来对带有“简明”二字的书抱有极大的好感。偶然的机会在豆瓣上看到有人推荐这本书,作者是龚升先生。龚升先生是中国科技大学教授,师从华罗庚。我个人觉得这本书是我读过的最好的国内的数学教材,结构条理,不拖沓但重点突出转载 2012-09-29 09:37:16 · 47404 阅读 · 3 评论 -
SVM(二)拉格朗日对偶问题
2 拉格朗日对偶(Lagrange duality) 先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束。通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为 L是等式约束的个数。 然后分别对w和求偏导,使得偏导数等于0,然后解出w和转载 2012-09-17 14:14:52 · 5052 阅读 · 0 评论 -
拉格朗日乘数法
在数学最优化问题中,拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的多元函数的极值的方法。这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。此方法的证明牵涉到偏微分转载 2012-09-17 10:00:14 · 13565 阅读 · 0 评论 -
SVM(一) 问题的提出
SVM是支持向量机从诞生至今才10多年,发展史虽短,但其理论研究和算法实现方面却都取得了突破性进展,有力地推动机器学习理论和技术的发展。这一切与支持向量机具有较完备的统计学习理论基础的发展背景是密不可分的。我看了一下网上的帖子和有关的资料,目前关于SVM大约有3到4个版本,但在网上到处都是转载的内容,最后谁叶不知原稿人是谁。svm主要分有4个问题 1.问题的提出转载 2012-09-17 14:14:12 · 1948 阅读 · 0 评论 -
SVM(三)支持向量机,线性不可分和核函数
3.1 线性不可以分我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面。看下面两张图:可以看到一个离群点(可能是噪声)可以造成超平面的移动,间隔缩小,可见以前的模型对噪声非常转载 2012-09-17 14:15:57 · 2212 阅读 · 0 评论 -
机器学习中的数学(2)-线性回归,偏差、方差权衡
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com。如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任。如果有问题,请联系作者 wheeleast@gmail.com前言: 距离上次发文章,也快有半个月的时间了,这半个月的时间里又在学习机器学习的道路上摸索着前进,积累了一点心得,以后会慢慢转载 2012-09-10 15:35:30 · 904 阅读 · 0 评论 -
机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com。如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任。前言: 上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是stanford的machine lear转载 2012-09-16 14:17:37 · 890 阅读 · 0 评论 -
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解转载 2012-09-16 16:45:06 · 2991 阅读 · 1 评论 -
机器学习中的数学(3)-模型组合(Model Combining)之Boosting与Gradient Boosting
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 本来上一章的结尾提到,准备写写线性分类的问题,文章都已经写得差不多了,但是突然听说最近Team准备做一套分布式的分类器,可能会使用Random Fo转载 2012-09-16 16:37:52 · 675 阅读 · 0 评论 -
机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA)
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com前言: 第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉及到很多的算法的意义、学习方法等等。一宁上次给我提到,转载 2012-09-10 15:58:41 · 839 阅读 · 0 评论 -
SVD分解
前面写了个简单的线性代数系列文章,目的就是让大家在接触SVD分解前,先了解回忆一下线性代数的基本知识,有助于大家理解SVD分解。不至于一下被大量的线性代数操作搞晕。这次终于开始正题——SVD的介绍了。所谓SVD,就是要把矩阵进行如下转换:A = USVTthe columns of U are the eigenvectors of the AAT matrix and the colum转载 2012-09-14 16:17:05 · 958 阅读 · 0 评论 -
SVD分解的理解
SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视。实际上,SVD分解不但很直观,而且极其有用。SVD分解提供了一种方法将一个矩阵拆分成简单的,并且有意义的几块。它的几何解释可以看做将一个空间进行旋转,尺度拉伸,再旋转三步过程。首先来看一个对角矩阵,几何上, 我们将一个矩阵理解为对于点 (x, y) 从一个平面到另一个平面的映射:下图显示了这个映射的效果: 平转载 2012-09-14 16:33:51 · 1024 阅读 · 0 评论 -
ROC曲线及AUC评价指标
转自:http://bubblexc.com/y2011/148/很多时候,我们希望对一个二值分类器的性能进行评价,AUC正是这样一种用来度量分类模型好坏的一个标准。现实中样本在不同类别上的不均衡分布(class distribution imbalance problem),使得accuracy这样的传统的度量标准不能恰当的反应分类器的性能。举个例子:测试样本中有A类样本90个,B转载 2012-09-29 09:39:39 · 2205 阅读 · 0 评论 -
logistic regression及其参数估计
在统计分析还有机器学习中,logistic regression都一种比较基本的工具。说基本也是相对的,在专业领域里很基础,但是logistic regression在通常的课程中还是不如linear regression更加基础一些。这也是为什么一般理工科学生都很熟悉linear regression,但是对logistic regression了解就要少一些。linear regr转载 2012-09-17 10:55:39 · 8847 阅读 · 0 评论