Ref:https://blog.youkuaiyun.com/ailaojie/article/details/83014821
https://blog.youkuaiyun.com/u013309870/article/details/75193592
https://blog.youkuaiyun.com/qq_37763204/article/details/79394397
算法导论
动态规划
定义
动态规划算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。
动态规划算法的基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。
A * "1+1+1+1+1+1+1+1 =?" *
A : "上面等式的值是多少"
B : *计算* "8!"A *在上面等式的左边写上 "1+" *
A : "此时等式的值为多少"
B : *quickly* "9!"
A : "你怎么这么快就知道答案了"
A : "只要在8的基础上加1就行了"
A : "所以你不用重新计算因为你记住了第一个等式的值为8!动态规划算法也可以说是 '记住求过的解来节省时间'"
基本思想与策略:
基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了实用的信息。
在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其它局部解。依次解决各子问题,最后一个子问题就是初始问题的解。
由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存并传递。
递归到动规的一般转化方法:
递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始, 逐步填充数组,相当于计算递归函数值的逆过程。
记住求解的方式有两种:①自顶向下的备忘录法 ②自底向上。
与分治法最大的区别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。
适用的情况
能采用动态规划求解的问题的一般要具有3个性质:
(1)最优化原理:假设问题的最优解所包括的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。
(2)无后效性:即某阶段状态一旦确定。就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响曾经的状态。仅仅与当前状态有关;
(3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到(该性质并非动态规划适用的必要条件,可是假设没有这条性质。动态规划算法同其它算法相比就不具备优势)。
求解的基本步骤
动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。
初始状态→│决策1│→│决策2│→…→│决策n│→结束状态
图1 动态规划决策过程示意图
(1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。
(2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。
(3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两个阶段的状态之间的关系来确定决策方法和状态转移方程。
(4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。
一般,只要解决问题的阶段、状态和状态转移决策确定了,就可以写出状态转移方程(包括边界条件)。
实际应用中可以按以下几个简化的步骤进行设计:
(1)分析最优解的性质,并刻画其结构特征。
(2)递归的定义最优解。
(3)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优值。
(4)根据计算优值时得到的信息,构造问题的最优解。
基础实例 斐波拉契数列Fibonacci
Fibonacci (n) = 1; n = 0
Fibonacci (n) = 1; n = 1
Fibonacci (n) = Fibonacci(n-1) + Fibonacci(n-2)
递归版
public int fib(int n)
{
if(n<=0)
return 0;
if(n==1)
return 1;
return fib( n-1)+fib(n-2);
}
//输入6
//输出:8
重复执行过多。
①自顶向下的备忘录法
public static int Fibonacci(int n)
{
if(n<=0)
return n;
int []Memo=new int[n+1];
for(int i=0;i<=n;i++)
Memo[i]=-1;
return fib(n, Memo);
}
public static int fib(int n,int []Memo)
{
if(Memo[n]!=-1)
return Memo[n];
//如果已经求出了fib(n)的值直接返回,否则将求出的值保存在Memo备忘录中。
if(n<=2)
Memo[n]=1;
else Memo[n]=fib( n-1,Memo)+fib(n-2,Memo);
return Memo[n];
}
备忘录法也是比较好理解的,创建了一个n+1大小的数组来保存求出的斐波拉契数列中的每一个值,在递归的时候如果发现前面fib(n)的值计算出来了就不再计算,如果未计算出来,则计算出来后保存在Memo数组中,下次在调用fib(n)的时候就不会重新递归了。比如上面的递归树中在计算fib(6)的时候先计算fib(5),调用fib(5)算出了fib(4)后,fib(6)再调用fib(4)就不会在递归fib(4)的子树了,因为fib(4)的值已经保存在Memo[4]中。
②自底向上的动态规划
备忘录法还是利用了递归,上面算法不管怎样,计算fib(6)的时候最后还是要计算出fib(1),fib(2),fib(3)……,那么何不先计算出fib(1),fib(2),fib(3)……,呢?这也就是动态规划的核心,先计算子问题,再由子问题计算父问题。
public static int fib(int n)
{
if(n<=0)
return n;
int []Memo=new int[n+1];
Memo[0]=0;
Memo[1]=1;
for(int i=2;i<=n;i++)
{
Memo[i]=Memo[i-1]+Memo[i-2];
}
return Memo[n];
}
自底向上方法也是利用数组保存了先计算的值,为后面的调用服务。观察参与循环的只有 i,i-1 , i-2三项,因此该方法的空间可以进一步的压缩如下。
public static int fib(int n)
{
if(n<=1)
return n;
int Memo_i_2=0;
int Memo_i_1=1;
int Memo_i=1;
for(int i=2;i<=n;i++)
{
Memo_i=Memo_i_2+Memo_i_1;
Memo_i_2=Memo_i_1;
Memo_i_1=Memo_i;
}
return Memo_i;
}
一般来说由于备忘录方式的动态规划方法使用了递归,递归的时候会产生额外的开销,使用自底向上的动态规划方法要比备忘录方法好。
动态规划原理
虽然已经用动态规划方法解决了上面两个问题,但是大家可能还跟我一样并不知道什么时候要用到动态规划。总结一下上面的斐波拉契数列和钢条切割问题,发现两个问题都涉及到了重叠子问题,和最优子结构。
①最优子结构
用动态规划求解最优化问题的第一步就是刻画最优解的结构,如果一个问题的解结构包含其子问题的最优解,就称此问题具有最优子结构性质。因此,某个问题是否适合应用动态规划算法,它是否具有最优子结构性质是一个很好的线索。使用动态规划算法时,用子问题的最优解来构造原问题的最优解。因此必须考查最优解中用到的所有子问题。
②重叠子问题
在斐波拉契数列和钢条切割结构图中,可以看到大量的重叠子问题,比如说在求fib(6)的时候,fib(2)被调用了5次,在求cut(4)的时候cut(0)被调用了4次。如果使用递归算法的时候会反复的求解相同的子问题,不停的调用函数,而不是生成新的子问题。如果递归算法反复求解相同的子问题,就称为具有重叠子问题(overlapping subproblems)性质。在动态规划算法中使用数组来保存子问题的解,这样子问题多次求解的时候可以直接查表不用调用函数递归。
动态规划经典模型
https://blog.youkuaiyun.com/u013309870/article/details/75193592
线性模型
线性模型的是动态规划中最常用的模型,上文讲到的钢条切割问题就是经典的线性模型,这里的线性指的是状态的排布是呈线性的。【例题1】是一个经典的面试题,我们将它作为线性模型的敲门砖。
区间模型
区间模型的状态表示一般为d[i][j],表示区间[i, j]上的最优解,然后通过状态转移计算出[i+1, j]或者[i, j+1]上的最优解,逐步扩大区间的范围,最终求得[1, len]的最优解。
背包模型
背包问题是动态规划中一个最典型的问题之一。由于网上有非常详尽的背包讲解,这里只将常用部分抽出来。
动态规划题集整理
1、最长单调子序列
Constructing Roads In JG Kingdom★★☆☆☆
Stock Exchange ★★☆☆☆
2、最大M子段和
Max Sum ★☆☆☆☆
最长公共子串 ★★☆☆☆
3、线性模型
Skiing ★☆☆☆☆
4.Leetcode 200. Number of Islands 岛屿的数量 (类似于油田问题,BST,DST优化)
参考文献
1.算法导论