LeetCode--edit-distance

本文详细介绍了如何使用动态规划解决编辑距离问题,包括插入、删除和替换字符三种操作,并提供了具体的代码实现。

题目描述


Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character


思路
用分治的思想解决比较简单,将复杂的问题分解成相似的子问题。


假设字符串 a, 共 m 位,从 a[1] 到 a[m]
字符串 b, 共 n 位,从 b[1] 到 b[n]
d[i][j] 表示字符串 a[1]-a[i] 转换为 b[1]-b[j] 的编辑距离。


那么有如下递归规律(a[i] 和 b[j] 分别是当前要计算编辑距离的子字符串 a 和 b 的最后一位):


当 a[i] 等于 b[j] 时,d[i][j] = d[i-1][j-1], 比如 fxy -> fay 的编辑距离等于 fx -> fa 的编辑距离
当 a[i] 不等于 b[j] 时,d[i][j] 等于如下 3 项的最小值:
d[i-1][j] + 1(删除 a[i](删除等价于插入操作,相当于插入b中插入a[i[)),比如 fxy -> fab 的编辑距离 = fx -> fab 的编辑距离 + 1
d[i][j-1] + 1(删除 b[j]或者插入b[j]),比如 fxy -> fab 的编辑距离 = fxyb -> fab 的编辑距离 + 1 = fxy -> fa 的编辑距离 + 1
d[i-1][j-1] + 1(将a[i]b[j]同时删除(等价于交换操作)),比如 fxy -> fab 的编辑距离 = fxb -> fab 的编辑距离 + 1 = fx -> fa 的编辑距离 + 1
递归边界:


a[i][0] = i, b 字符串为空,表示将 a[1]-a[i] 全部删除,所以编辑距离为 i
a[0][j] = j, a 字符串为空,表示 a 插入 b[1]-b[j],所以编辑距离为 j
非动态规划的递归代码
按照上面的思路将代码写下来
int minDistance(string word1, string word2) {
        if(word1 == word2) return 0;
         
        int m = word1.size();
        int n = word2.size();
         
        if(word1 == "")
        {
            return n;
        }
         
        if(word2 == "")
        {
            return m;
        }
         
        if(word1[0] == word2[0])
        {
            return minDistance(word1.substr(1), word2.substr(1));
        }
        else
        {
            return min(1 + minDistance(word1, word2.substr(1)), min(1 + minDistance(word1.substr(1), word2), 1 + minDistance(word1.substr(1), word2.substr(1))));
        }
 
    }

这道题让求从一个字符串转变到另一个字符串需要的变换步骤,共有三种变换方式,插入一个字符,删除一个字符,和替换一个字符。根据以往的经验,对于字符串相关的题目十有八九都是用动态规划Dynamic Programming来解,这道题也不例外。这道题我们需要维护一个二维的数组dp,其中dp[i][j]表示从word1的前i个字符转换到word2的前j个字符所需要的步骤。那我们可以先给这个二维数组dp的第一行第一列赋值,这个很简单,因为第一行和第一列对应的总有一个字符串是空串,于是转换步骤完全是另一个字符串的长度。跟以往的DP题目类似,难点还是在于找出递推式,我们可以举个例子来看,比如word1是“bbc",word2是”abcd“,那么我们可以得到dp数组如下:

 

  Ø a b c d
Ø 0 1 2 3 4
b 1 1 1 2 3
b 2 2 1 2 3
c 3 3 2 1 2

 

我们通过观察可以发现,当word1[i] == word2[j]时,dp[i][j] = dp[i - 1][j - 1],其他情况时,dp[i][j]是其左,左上,上的三个值中的最小值加1,那么可以得到递推式为:

dp[i][j] =      /    dp[i - 1][j - 1]                                                                   if word1[i - 1] == word2[j - 1]

                  \    min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1            else


class Solution {
public:
    int minDistance(string word1, string word2) {
        int n1 = word1.size(), n2 = word2.size();
        int dp[n1 + 1][n2 + 1];
        for (int i = 0; i <= n1; ++i) dp[i][0] = i;
        for (int i = 0; i <= n2; ++i) dp[0][i] = i;
        for (int i = 1; i <= n1; ++i) {
            for (int j = 1; j <= n2; ++j) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1;
                }
            }
        }
        return dp[n1][n2];
    }
};


参考:http://blog.youkuaiyun.com/pipisorry/article/details/46383947

         https://www.cnblogs.com/grandyang/p/4344107.html




【负荷预测】基于VMD-CNN-LSTM的负荷预测研究(Python代码实现)内容概要:本文介绍了基于变分模态分解(VMD)、卷积神经网络(CNN)和长短期记忆网络(LSTM)相结合的VMD-CNN-LSTM模型在负荷预测中的研究与应用,采用Python代码实现。该方法首先利用VMD对原始负荷数据进行分解,降低序列复杂性并提取不同频率的模态分量;随后通过CNN提取各模态的局部特征;最后由LSTM捕捉时间序列的长期依赖关系,实现高精度的负荷预测。该模型有效提升了预测精度,尤其适用于非平稳、非线性的电力负荷数据,具有较强的鲁棒性和泛化能力。; 适合人群:具备一定Python编程基础和深度学习背景,从事电力系统、能源管理或时间序列预测相关研究的科研人员及工程技术人员,尤其适合研究生、高校教师及电力行业从业者。; 使用场景及目标:①应用于日前、日内及实时负荷预测场景,支持智慧电网调度与能源优化管理;②为研究复合型深度学习模型在非线性时间序列预测中的设计与实现提供参考;③可用于学术复现、课题研究或实际项目开发中提升预测性能。; 阅读建议:建议读者结合提供的Python代码,深入理解VMD信号分解机制、CNN特征提取原理及LSTM时序建模过程,通过实验调试参数(如VMD的分解层数K、惩罚因子α等)优化模型性能,并可进一步拓展至风电、光伏等其他能源预测领域。
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)内容概要:本文研究了一种基于融合鱼鹰和柯西变异的麻雀优化算法(OCSSA)优化变分模态分解(VMD)参数,并结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的轴承故障诊断模型。该方法利用西储大学轴承数据集进行验证,通过OCSSA算法优化VMD的分解层数K和惩罚因子α,有效提升信号去噪与特征提取能力;随后利用CNN提取故障特征的空间信息,BiLSTM捕捉时间序列的长期依赖关系,最终实现高精度的轴承故障识别。整个流程充分结合了智能优化、信号处理与深度学习技术,显著提升了复杂工况下故障诊断的准确性与鲁棒性。; 适合人群:具备一定信号处理、机器学习及MATLAB编程基础的研究生、科研人员及从事工业设备故障诊断的工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选择的问题,实现自适应优化;②构建高效准确的轴承故障诊断模型,适用于旋转机械设备的智能运维与状态监测;③为类似机电系统故障诊断提供可借鉴的技术路线与代码实现参考。; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注OCSSA算法的设计机制、VMD参数优化过程以及CNN-BiLSTM网络结构的搭建与训练细节,同时可尝试在其他故障数据集上迁移应用以加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值