题意:n个点,m条边,去除某些点使s、d不连通,每个点有权值
思路:最小割等于最大流。n个点拆点,入点到出点,边权为点权;m条双向边,出点连入点,边权为inf
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<stdlib.h>
#include<math.h>
#include<vector>
#include<list>
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<algorithm>
#include<numeric>
#include<functional>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int maxn = 505;
struct edge {int to,cf,rev;};
vector<edge> G[maxn];
int lev[maxn],iter[maxn];
void init(int x)
{
for(int i = 0; i <= x; i++)
G[i].clear();
}
void add(int from, int to, int cap)
{
G[from].push_back((edge){to,cap,G[to].size()});
G[to].push_back((edge){from,0,G[from].size()-1});
}
void bfs(int s)
{
memset(lev,-1,sizeof lev);
queue<int> q;
lev[s] = 0;
q.push(s);
while(!q.empty())
{
int v = q.front();q.pop();
for(int i = 0; i < G[v].size(); i++)
{
edge &e = G[v][i];
if(e.cf > 0 && lev[e.to] < 0)
{
lev[e.to] = lev[v] + 1;
q.push(e.to);
}
}
}
}
int dfs(int v,int t, int f)
{
if(v == t) return f;
for(int &i = iter[v]; i < G[v].size(); i++)
{
edge &e = G[v][i];
if(e.cf > 0 && lev[v] < lev[e.to])
{
int d = dfs(e.to, t, min(f,e.cf));
if(d > 0)
{
e.cf -= d;
G[e.to][e.rev].cf += d;
return d;
}
}
}
return 0;
}
int maxflow(int s,int t)
{
int flow = 0;
while(1)
{
bfs(s);
if(lev[t] < 0) return flow;
memset(iter,0,sizeof iter);
int f;
while((f = dfs(s,t,0x3f3f3f3f)) > 0)
flow += f;
}
}
int main(void)
{
int n,m,s,d;
while(scanf("%d%d",&n,&m)!=EOF)
{
scanf("%d%d",&s,&d);
init(2*n);
for(int i = 1; i <= n; i++)
{
int k;
scanf("%d",&k);
add(2*i-1,2*i,k);
}
for(int i = 0; i < m; i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(2*b,2*a-1,0x3f3f3f3f);
add(2*a,2*b-1,0x3f3f3f3f);
}
printf("%d\n",maxflow(2*s-1,2*d));
}
return 0;
}